Start validation of a novel flow cytometer

VALIDATION

Malicorne Buysse University Hospital Ghent

How to participate?

Enable answers by SMS

@ Copy participation link

OVERVIEW

- Introduction
 - Validation-related challenges
 - References, publications
 - CLSI H62 guideline 2021
 - Get to know your instrument
 - Acceptance criteria
- Instument validation plan for a novel flow cytometer (for example: FACS LyricTM)
 - Instrument validation parameters
 - Extended PQ parameters
 - Method validation parameters
 - (Addenda)
- Q&A

OVERVIEW

- Introduction
 - Validation-related challenges
 - References, publications
 - CLSI H62 guideline 2021
 - Get to know your instrument
 - Acceptance criteria
- Instument validation plan for a novel flow cytometer (for example: FACS LyricTM)
 - Instrument validation parameters
 - Extended PQ parameters
 - Method validation parameters
 - (Addenda)
- Q&A

Validation-related challenges for flowcytometry

"Flow cytometers are complex, flexible

instruments, with unique validation needs"

Green et al. 2011

https://app.wooclap.com/events/JCCAYN/questions/65c3c5b21c4abb96ee44640f

Validation-related challenges for flowcytometry

- Almost no reference materials /standards available (data is not derived from a calibration curve)
- Data is often qualitative and semi-quantitative:
 - e.g. most populations are expressed as percentages in relation to a reference population
 - Quantitive analysis is possible by the use of calibrated beads (cfr. internal standard) in combination with the results of the cell counters
 - Challenging to assess linearity and accuracy
- Stability of the samples is an important parameter of variability

- Difficulty in obtaining samples with variation in expression levels → creative thinking!
- Limited sample volume available for testing
- Cellular measurands \rightarrow existing guidance for quantifying soluble analytes is not fully applicable

<u>References</u>

Selliah, N., Eck, S., Green, C., Oldaker, T., Stewart, J., Vitaliti, A.,
& Litwin, V. (2019). Flow cytometry method validation protocols. *Current Protocols in Cytometry*, 87, e53. doi: 10.1002/cpcy.53

Cytometry Part B (Clinical Cytometry) 84B:315–323 (2013)

Validation of Cell-based Fluorescence Assays: Practice Guidelines from the ICSH and ICCS – Part V – Assay Performance Criteria

Brent Wood,¹ Dragan Jevremovic,² Marie C. Béné,³ Ming Yan,⁴ Patrick Jacobs,⁵ Virginia Litwin^{6*}; on behalf of ICSH/ICCS Working Group¹

Best practices in performing flow cytometry in a regulated environment: feedback from experience within the European Bioanalysis Forum

Barry van der Strate^{*,1}, Robin Longdin², Marie Geerlings¹, Nora Bachmayer³, Maria Cavallin⁴, Virginia Litwin⁵, Minesh Patel⁶, Wilfried Passe-Coutrin⁷, Corinna Schoelch⁸, Arjen Companjen³ & Marianne Scheel Fjording⁹

Characterization of Flow Cytometer Instrument Sensitivity

Contributed by Robert A. Hoffman and James C.S. Wood Current Protocols in Cytometry (2007) 1.20.1-1.20.18

The evolution of guidelines for the validation of flow cytometric methods

L DU*, A. GROVER[†], S. RAMANAN*, V. LITWIN[†]

Evaluation and validation of a novel 10-color flow cytometer

 ${\sf Lin} \ {\sf Sun}^1 @ \ | \ \ {\sf Hui} \ {\sf Wu}^1 \ \ | \ \ {\sf Baishen} \ {\sf Pan}^1 \ \ | \ \ {\sf Beili} \ {\sf Wang}^1 @ \ \ | \ \ {\sf Wei} \ {\sf Guo}^{1,2,3}$

Validation of a flow cytometry-based method to quantify viable lymphocyte subtypes in fresh and cryopreserved hematopoietic cellular products

Bechara Mfarrej^{*}, Julie Gaude, Jerome Couquiaud, Boris Calmels, Christian Chabannon, Claude Lemarie

Validation and quality control of immunophenotyping in clinical flow cytometry

Marilyn A. Owens^{a,*}, Horacio G. Vall^a, Anne A. Hurley^b, Susan B. Wormsley^c

Determination of Optimal Replicate Number for Validation of Imprecision Using Fluorescence Cell-Based Assays: Proposed Practical Method

Bruce H. Davis,^{1*} Christine E. McLaren,² Anthony J. Carcio,¹ Linda Wong,¹ Benjamin D. Hedley,³ Mike Keeney,³ Adam Curtis,¹ and Naomi B. Culp¹

Guideline on bioanalytical method validation

Accurate and reproducible enumeration of T-, B-, and NK lymphocytes using the BD FACSLyric 10-color system: A multisite clinical evaluation

Imelda Omana-Zapata¹^e*, Caren Mutschmann²^e, John Schmitz³^e, Sarah Gibson⁴^e, Kevin Judga¹^e, Monika Aruda Indig⁵^e, Beverly Lu¹^e, Doreen Taufman²[‡], Alan M. Sanfilippo^{3=‡}, Wendy Shallenberger^{4‡}, Sharon Graminske^{5‡}, Rachel McLean^{6‡}, Rubal I. Hsen^{6‡}, Nicole d'Empaire^{7‡}, Kimberly Dean^{1‡}, Maurice O'Gorman⁶^e High-sensitivity flow cytometric assays: Considerations for design control and analytical validation for identification of Rare events

Ulrike Sommer¹ | Steven Eck² | Laura Marszalek³ | Jennifer J. Stewart⁴ | Jolene Bradford⁵ | Thomas W. McCloskey⁶ | Cherie Green⁷ | Alessandra Vitaliti¹ Teri Oldaker⁸ | Virginia Litwin⁹

Expanding NIST Calibration of Fluorescent Microspheres for Flow Cytometry to More Fluorescence Channels and Smaller Particles

Paul DeRose 1,* , Linhua Tian 1 , Elzafir Elsheikh 1 , Aaron Urbas 2 , Yu-Zhong Zhang 3 and Lili Wang 1

2020 White Paper on Recent Issues in Bioanalysis: BAV Guidance, CLSI H62, Biotherapeutics Stability, Parallelism Testing, CyTOF and Regulatory Feedback (Part 2A – Recommendations on Biotherapeutics Stability, PK LBA Regulated Bioanalysis, Biomarkers Assays, Cytometry Validation & Innovation Part 2B – Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine)

Susan Spitz^{$\dagger,1$}, Yan Zhang^{$\dagger,2$}, Sally Fischer^{$\dagger,3$}, Kristina McGuire^{$\dagger,12$}, Ulrike Sommer^{$\dagger,1,4$},

Recommendations for the validation of flow cytometric testing during drug development: I instrumentation

Cherie L. Green a,* , Lynette Brown b , Jennifer J. Stewart b , Yuanxin Xu c , Virginia Litwin d, Thomas W. Mc Closkey e

Flow Cytometry Method Validation Protocols

Nithianandan Selliah,¹ Veronica Nash,¹ Steven Eck,² Cherie Green,³ Teri Oldaker,⁴ Jennifer Stewart,⁵ Alessandra Vitaliti,⁶ and Virginia Litwin^{7,8}

CLSI H62 Guideline 1st edition 2021

Practical recommendations for:

- research facilities
- manufacturers
- biopharmaceutical companies
- clinical/medical laboratories

Chapter 4 Instrument qualification

Get to know your instrument

"Instrument validation starts with adequate knowledge of the instrument and its intended use"

Du et al. 2015

Acceptance criteria

÷

Based on:

1) Literature

Instrument validation:

Flow Cytometer Performance Characterization, Standardization, and Control

Lili Wang and Robert A. Hoffman

Cytometry Part B (Clinical Cytometry) 84B:291–308 (2013)

Validation of Cell-based Fluorescence Assays: Practice Guidelines from the ICSH and ICCS – Part III – Analytical Issues

Shabnam Tangri,^{1®} Horacio Vall² David Kaplan,³ Bob Hoffman,⁴ Norman Purvis,⁵ Anna Porwit,⁶ Ben Hunsberger,⁷ T. Vincent Shankey⁸; on behalf of ICSH/ICCS Working Group¹

42

CLSI H62 Guideline → Chapter 4

Method validation:

Flow Cytometry Method Validation Protocols

Nithianandan Selliah,¹ Veronica Nash,¹ Steven Eck,² Cherie Green,³ Teri Oldaker,⁴ Jennifer Stewart,⁵ Alessandra Vitaliti,⁶ and Virginia Litwin^{7,8}

Framework, based on H62/White papers Protocol 3 addresses the type of validation performed in **clinical laboratories** for moderate-risk tests **developed in house**

Minimal requirements on:

When to validate, How to validate, How to make calculations? Type of validation Samples, time points, replicate number, n° of instruments, replicates, runs, operators, statistics...

ᠿ

and clear acceptance criteria/templates

Acceptance criteria

Based on:

2) Vendor specifications :

- device
- CS&T beads
- calibration beads
- reference standards (MultiCheck/Stem cell control/ Immuno-TROL..)

3) Expert opinion

- \rightarrow Only as an additional criteria, or in case no other specifications exist
- \rightarrow Justify the reason!

4) No acceptence criteria possible

 \rightarrow Validation parameter is informative only (for ex. LOB)

Performance

Acquisition rate

Up to 35,000 events per second No limit on number of events acquired in a single FCS file

Carryover

<0.10% with default SIT flush <0.05% with 3 or more SIT flushes

Sensitivity

% Difference

<85 MESF FITC: <20 MESF PE:

Channel Qr (x1,000)

FITC	20
PE	133
PerCP-Cy™5.5	13
PE-Cy™7	17
APC	10
BD Horizon™ APC-R700	8
APC-Cy7	7
BD Horizon™ V450	47
BD Horizon™ V500	17
BD Horizon™ BV605	133
BD Horizon [™] BV711	43
BD Horizon™ BV786	16

Fluorescence precision

< 3% CV for chicken erythrocyte nuclei (CEN)

Fluorescence linearity

2 ±0.05% for CEN

Data resolution

Uncompensated data has a range of 0-262,143

SSC and FSC resolution

Enables separation of 0.2-µm beads from noise

System throughput

Absolute count, multicolor assay example: ≤50 minutes for a 40-tube rack

50 Tests—Catalog No. 656504 150 Tests—Catalog No. 656505 Table 2 Accuracy of cytometer setup using BD[®] CS&T Beads Bright bead MFI Parameter Target Actual FS ss FI PF Pe

BD CS&T Beads

FSC	17,997	17,998	0.01
SSC	126,535	126,107	-0.34
FITC	5,477	5,479	0.04
PE	12,877	12,873	-0.03
PerCP-Cy5.5	15,574	15,622	0.31
PE-Cy7	11,883	11,867	-0.13
APC	41,354	41,370	0.04
APC-R700	28,455	28,486	0.11
APC-Cy7	60,190	60,386	0.33
V450	6,140	6,158	0.29
V500-C	24,442	24,356	-0.35
BV605	6,457	6,465	0.12
BV711	38,812	39,014	0.52
BV786	75,550	75,556	0.01

OVERVIEW

- Introduction
 - Validation-related challenges
 - References, publications
 - CLSI H62 guideline 2021
 - Get to know your instrument
 - Acceptance criteria
- Instument validation plan for a novel flow cytometer (for example: FACS LyricTM)
 - Instrument validation parameters
 - Extended PQ parameters
 - Method validation parameters
 - (Addenda)
- Q&A

Instrument validation plan

Validation Plan: example

Validation (PQ)	Extended PQ (~ intended use)	validation	Addenda
Linearity	Acquisition speed	Bias	Software calculations
Dynamic Range	Storage capacity	Imprecision	Workflow manager
(Light scatter) Sensitivity	Light scatter resolution	Total error	Automatic export raw data
Electric Noise	Small particle resolution	Method comparison	Changes in panels
Carry over	Cross- instrument/lab standardization	Other parameters	New panels (12 colors)

Linearity/Dynamic Range/Sensitivity

Linearity					D '	el	
Detectors/amps functioning properly?			Stained	Advantage	Disadvantage	intensity is assigned in	Examples
Dynamic Range	With	Antibody captured	On the surface	Spectrally matched,	Unstable, sensitive to	MESF values (molecule of equivalent soluble	Quantum 24 beads (Bangs Lab)
The limit within which all data is reproducible and		beaus		properties as your samples	salt conc)	fluorochrome)	QuantiBrite (BD)
Sensitivity		Hard dyed beads	Internally, multiple peaks	Stable	May not be fully excited by some	MEF values (molecule of equivalent fluorochrome)	Rainbow beads (Sperotech)
The ability to detect events above					May resolve fewer peaks		Cyto-Cal beads

events above background and to resolve dim events

Linearity/Dynamic Range/Sensitivity

National Institute of Standards and Technology (NIST):

Assigns equivalent reference fluorophore (ERF) values to calibration beads

Expanding NIST Calibration of Fluorescent Microspheres for Flow Cytometry to More Fluorescence Channels and Smaller Particles

Paul DeRose 1,* , Linhua Tian 1 , Elzafir Elsheikh 1 , Aaron Urbas 2 , Yu-Zhong Zhang 3 and Lili Wang 1

- How: Fluorophore solutions of known concentration (such as Standard Reference Material (SRM) 1934; comprised of 4 reference fluorophores) AND bead suspension are measured with a CCD-fluorescence spectrometer
- ➢ Goal: accurately quantify the number of 'antibodies bound per cell' (ABC)
- Advantage: standardization (H62: "they provide a common fluorescence intensity scale that is consistent across flow cytometers with identical optical configurations")
- →NIST has assigned calibration beads for more than 50 fluorescence channels using five different laser colors and continues to develop additional reference fluorophores for fluorescence channels not yet covered

Commercially available product from SpheroTech with certified ERF values with SRM 1934 certificate:
 → Ultra Rainbow Quantitative Particle Kit: 6 intensities (fluorescent channels FITC/PE/APC/PacBlue)
 → Supra Rainbow Quantitative Particle Kit: 4 intensities (fluorescent channels with emission ranges 425 - 810nm)

Linearity/Dynamic Range/Sensitivity

CLSI H62 Guidelines:

"A set of good-quality multi-intensity beads that includes both unstained beads and beads with defined fluorescence intensity units is adequate for characterizing cytometer performance."

→ Calibration curves can be obtained with multi-intensity beads with assigned fluorescence intensity units (gain-independent fluorescence units: MEF/MESF/ERF)

would be suitable calibrators. Indeed, clinical assays that require mean fluorescence measurements with 10% accuracy use fluorophore-specific surface-stained beads for calibration. Hard-dyed beads can be a good standard to set up the fluorescence scale and verify linearity and dynamic range of the instrument among a group of study instruments. If a factor-of-2 variation in the mean fluorescence from cells can be tolerated, hard-dyed beads can be used as a standard.

Wooclap question 2

https://app.wooclap.com/events/JCCAYN/questions/65c3c601b 7c0977e49946eb2

Which statement is correct?

- The Operational qualification provides documented evidence that the system performs consistently over the period of time for the intended purpose
- Ultra Rainbow Particles show poorer performance in the far-red region compared to Rainbow Particles
- The fluorescence emission of hard dyed beads may be affected by the pH, salt concentration and other factors present in the buffer they are exposed to
- An MESF value of 1000 for the FITC channel is equivalent to the fluorescence of a solution containing 1000 FITC molecules
- The advantage of ERF assigned beads is the traceability and standardization across instruments with different optical configuration

Linearity/Dynamic Range: Rainbow beads

Peak 1 = blanco,

Peak 2-8: increasing amount of fluorochrome

Technical notes STN-14 (linearity) and STN-17 (sensitivity Q en B)<u>: https://www.spherotech.com/tech.htm</u> Supportive templates with calculations (Rainbow + Ultra Rainbow beads)<u>: Technical Page - Templates – Spherotech</u> Webinar: <u>https://youtu.be/w9iCYwUX0Hk</u>

Linearity/Dynamic Range: Rainbow beads

NEPE	CALC.	RESIDUAL	CALC.	MEPE LOG	MEPE	CH #	PEAK #
16			1,210			44,78	1
424		0,59%	2,627	2,612	409	<u>112,85</u>	2
1266		0,18%	3,103	3,097	1250	135,68	3
3464		0,13%	3,540	3,535	3428	156,66	4
11120		1,02%	4,046	4,087	12229	180,98	5
34594		0,08%	4,539	4,535	34294	204,65	6
)6431	1	0,53%	5,027	5,054	113118	228,09	7
79746	2	0,70%	5,447	5,408	256134	248,24	8
		0,46%	sidual	Ave Res			
	0,0208	Slope:					
	0.2770	Intercept:					
	0,9993	Rsq:					

These beads allow us to judge linearity, dynamic range and detection simultaneously

		Dynamic range	
2	Channel 0	(0-Intercept)/Slope	0,3
	Channel 2 ¹⁸	(((2^18)-1)-Intercept)/Slope	5,2
	Dynamic Range (log decades)	Channel 2^18- channel 0	4,9

Specifications

Linearity			Dynamic Range	2		Sensitivity
Average Residual	< 5%	Leaflet Spherotech				
						a higher Q and a lower B increases the ability
						to resolve a dim population from the
Correlation coefficiënt (R ²)	> 0,99%	Leaflet Spherotech	Log Amp decade	> 5	Van Bockstaele et al.	background noise

Sensitivity: Rainbow beads

Light scatter sensitivity is often expressed as the MESF value of the <u>smallest detectable bead or intercept</u>

WRONG: only specifies the detection threshold provides no information about the ability to resolve dim populations!

- → Sensitivity should be measured in terms of Q and B (take into account the broadness of the unstained bead and compare is to the MFI of a stained antibodycaptured bead)
- \rightarrow Q and B can also be calculated with templates provided by Sperotech

(Hard died beads: unstained + dim1/dim2/dim3 beads +

Antibody-captured beads: bright bead (CV))

Hofmann and Wood 2007

<u>Specifications</u>						
Linearity			Dynamic Range	9		Sensitivity
Average Residual	< 5%	Leaflet Spherotech				a higher Q and a lower B increases the ability to resolve a dim population from the
Correlation coefficiënt (R ²)	> 0,99%	Leaflet Spherotech	Log Amp decade	> 5	Van Bockstaele et al.	background noise

Linearity/Dynamic Range: ERF Ultra Rainbow beads

Example: URQP beads for Pacific Blue Channel (DAPI)

Bead Population	MFI	SD	% CV	ERF
Peak 1 (blank)	62	16	25.1	N/A
Peak 2	487	32	6.5	0.524 × 10 ⁵
Peak 3	4250	196	4.6	3.23 × 10 ⁵
Peak 4	12 385	520	4.2	9.95 × 10 ⁵
Peak 5	35 060	1472	4.2	38.3 × 10 ⁵
Peak 6	88 138	3790	4.3	71.7 × 10 ⁵

Plot on x-as

Plot on y-as

Linearity/Dynamic Range: ERF Ultra Rainbow beads

Excellent linearity over

OFF SCALE

Alternative method: Ratiometric method with URQP beads

- \rightarrow Detector voltage \downarrow in 25V steps to move the brightest peak from the upper end to the lower end
- \rightarrow Measures MedFIs of bead 5 and 6 and MFI ratio is plotted vs PMT Voltage
- \rightarrow Both bead populations must be fully on scale for all voltages tested
- → Advantage: more accurate assessment

easy to perform (no assignment of fluorescent intensity units needed), takes only a short time

Electronic Noise

The contribution of electronic noise becomes more significant at the lowest end of the measurement scale.

 \rightarrow Contributes to the broadening of signals in negative or very dim populations

Turn the voltage to ZERO and measure the rSD of the resulting signal

OR: measure SD, CV and MedFI of a Dim/Moderate bead when reducing the detector voltage to lower values

ightarrow The rSD will tend toward a **stable** number

 \rightarrow rSD can be determined by plotting CV² vs 1/MdFl2 \rightarrow rSD² = slope \rightarrow obtain rSD= $\sqrt{(rSD^2)}$

For the best resolution of dim signals: set the voltage where CV of unstained population is not significant broadened by the electronic noise

Check whether cells from one sample can be transferred via the device to the next sample: how many cells are measured in the blanco?

 → Determination of this parameter is crucial for rare event determinations!
 → Higher risk on carry-over with automated sample loaders

Specifications

1 SIT flush	< 0,1%	Spec company
3 SIT flushes	< 0,05%	Spec company

Carry-over (Q%) = ((B1-B3)/(A3-B3))*100

Carry-over

When it is difficult to obtain cell-rich samples:

Alternative: beads in Trucount tubes

BD Calibrate APC Beads mixed with PBS in BD Trucount[™] Tubes were collected three times containing at least 100,000 standard particles each time. The carry-over contamination rates of the cycles were calculated as 0.17% (blanks result: 302, 183, and 133; beads result: 100019, 100020, and 100175), 0.13% (blanks result: 204, 320, and 74; beads result: 100188, 100166, and 100169), and 0.14% (blanks result: 227, 91, and 83; beads result: 100145, 100186, and 100175).

Preventive actions in case of out-of-spec:

- Standard 3 SIT flushes between samples
- Sensitive assays (MRD, LF,..): 60"cleaning sample before each sample + clean sample port with tissue

Sun et al. 2021

Wooclap question 3

https://app.wooclap.com/events/JCCAYN/questions/65c3c6501 c3f14438923fed7

Which statement is correct?

- The Ratiometric approach is more accurate than the linear fitting approach for determining linearity as it relies on assigned fluorescence units
- The detection threshold as a measure of sensitivity, gives information about the ability to resolve dim or rare from bright populations
- The dimmest peak of the Ultra Rainbow particle kit is used to assess optical alignment: the smaller the CV, the better the alignment of the sample stream to the laser beam
- The contribution of electronic noise is dependent on the PMT voltage and becomes more significant at the lowest end of the measurement scale
- To determine the carry-over, it is important to run every condition for the same amount of time

Validation Plan: example

Instrument Validation (PQ)	Extended PQ (~ intended use)	Method validation	Addenda
Linearity	Acquisition speed	Bias	Software calculations
Dynamic Range	Storage capacity	Imprecision	Workflow manager
(Light scatter) Sensitivity	Light scatter resolution	Total error	Automatic export raw data
Electric Noise	Small particle resolution	Method comparison	Changes in panels
Carry over	Cross- instrument/lab standardization	Other parameters	New panels (12 colors)
Sensitivity Electric Noise Carry over	resolution Small particle resolution Cross- instrument/lab standardization	Method comparison Other parameters	raw data Changes in panels New panels (12 colors)

Acquisition speed

At what speed can you measure with an acceptable abort rate and free of errors?

- \rightarrow Cell-rich sample (bulk lysed) stained for subset panel
- \rightarrow Prepare a dilution series
- → 3 replicates, 3 different speeds (low/medium/high) Same time per condition
- \rightarrow Register the abort rate

Specifications					
Abort rate at 20 000/sec	< 6%	Vendor specifications			
Abort rate at 35 000/sec	< 15%	Expert opinion			
35 000/sec feasible	without alarms	Expert opinion			

Acquisition speed

Low speed High speed background positive Fluorescence Fluorescence At what speed can you measure with an acceptable resolution?

Impact of acquisition speed on resolution can be evaluated using the Staining Index or Resolution Index (for ex. for the major cell population within subset analysis)

Stain Index = $\frac{(MFIpos MFI_{neg})}{2 \times SDneg}$

Resolution index (RI) = $\frac{MFI_{pos} - MFI_{neg}}{\sqrt{SD_{pos}^{2} + SD_{neg}^{2}}}$

Specifications

Difference in staining index (SI)		
between HIGH and LOW speed	<10% difference	ICCS/ICSH guidelines

Storage capacity

Is there a limitation on the number of events saved in the FCS.file? Control the effect of big data files on the performance of the software

Cell-rich sample (CLL) stained for CLL panel **Test 2 different stopping criteria** (2 FCS.files) Is there a delay when adjusting gates? Analysis preferable done in external software on a workstation with sufficient RAM

Cell	File 1:	File 2:	% Bias
populations	1 x 10 ⁶	10 x 10 ⁶	
	events	events	
B cells	98.2%	98.6%	0.04%
CLL+ cells (on	97.6%	98.1%	0.5%
lymfocytes)			
CLL+ cells (on	88.5%	94.4%	6.7%
WBC)			

<u>Specificatio</u>	ons	
	%bias <10%	
Comparable results between 1 x 106	Same clinical	
and 10 x 106 events	interpretation	Expert opinion
	Without blockage	
Analysis of data file	No limits of events	Vendor specifications (BD)

Light scatter resolution

Based on FSC and SSC, is there a clear separation between the cell populations?

Recommended to verify with **cells** of interest instead of beads As light scatter is affected by:

- Size: controllable
- refractive index: > RI of polymer beads is higher then RI of cells

> even silica beads are not analogue

> different devices measure different angles of scatter

> cells are not homogeneous (RI of nucleus ≠ cytoplasma)

Newer materials (HYDROGELS) are being produced as light-scatter standards

Clear separation between platelets and red blood cells, and between lymfocytes, monocytes and neutrophils

Du et al. un et al. 2021

Small particles

What is the smallest size of particles that can still be measured with an acceptable resolution?

Capacity to discriminate small particles from background SPHERO[™] Flow Cytometry Nano Fluorescent Size Standard Kit (4 diameters) Other options: Apogee beads BioCytex Megamix-Plux Optimize TRESHOLD and VOLTAGES/GAINS

Specifications

Distinguish beads up to a size of $0,25 \mu M$

Erdbrugger et al.

Cross-instrument standardisation

Can you obtain the same experimental result regardless of where, when and by whom the sample is analysed?

- To ensure consistency
- The sensitivity of the instruments must be as close as possible
- With spectrally matched (antibody-binding) beads OR cells of interest: equivalent intensity values (MESF or MedFI) should be obtained by adjusting voltages
- After cross-standardisation monitor each cytometer daily with hard dyed beads (CS&T)!

Cells of interest

<u>Specific</u>	<u>ations</u>
	Similar MedFI +/- 7% on all
Moderate- to high intensity beads	instruments

	,		
ensity beads	instruments	CLSI H62	
	Similar dot plots with +/- 15%	CLSI H62	
	for positive staining		

WooClap excercise 4

https://app.wooclap.com/events/JCCAYN/questions/65c3c6a9b 7c0977e49949feb

Validation Plan: example

Instrument Validation (PQ)	Extended PQ (~ intended use)	Method validation	Addenda	
Linearity	Crossinstrument standardization	Bias	Software calculations	
Dynamic Range	Acquisition speed	Imprecision	Workflow manager	
(Light scatter) Sensitivity	Storage capacity	Total error	Automatic export raw data	
Electric Noise	Light scatter resolution	Method comparison	Changes in panels	
Carry over	Small particle resolution	Other parameters	New panels (12 colors)	

Fit-for-purpose approach

Regulatory Setting	Intended Use of Data	Assay Type	Recommended Validation Strategy	
Nonregulated	Basic research	Novel assay	FFP validation type 1	
Nonregulated	Drug discovery	Novel assay	FFP validation type 1	
Nonregulated	Exploratory end points in clinical trials	Novel assay	FFP validation type 1	
Nonregulated (GCLP recommended)	Secondary end points in clinical trials	Novel assay	FFP validation type 2	
Medical laboratory (CAP, CLIA, or ISO ³⁴)	Patient care and/or treatment	IVD	Verification ^a	7
Medical laboratory (CAP, CLIA, or ISO ³⁴)	Patient care and/or treatment	Qualitative LDT assay	CLIA/IMDRF qualitative validation	4
Medical laboratory (CAP, CLIA, or ISO ³⁴)	Patient care and/or treatment	Quantitative LDT assay	CLIA/IMDRF quantitative validation	
Medical laboratory (CAP, CLIA, or ISO ³⁴)	Patient care and/or treatment	Laboratory-initiated assay revision	Laboratory-initiated assay revision validation	
GLP, GCLP ^b	Primary end point in clinical development	Novel assay	Analytical validation type 1	
Manufacturing (GMP, ISO ⁶⁴)	Regulatory submission for new diagnostic test	Novel assay	Analytical validation type 2	
Manufacturing (GMP, ISO ⁶⁴)	CDx	Novel assay	Analytical validation type 2	I

""A validation strategy appropriate for the intended use should be applied" CLSI H62

Table 22: lists all validation scenario's + Appendix A: minimal requirements and criteria

<u>**CE-IVD assays</u>**: verify precision/stability/reference intervals, NO LOB/LOD/LLOQ!</u>

<u>Qualitative LDT assays</u>: comparison with a confirmed diagnosis or comparative method (clinical validation), calculate concordance!, determine also carry-over

Quantitative LDT assays: also LOB/LOD/LLOQ! Most validation parameters for this scenario

<u>Revision</u>: changes afterwards in reagents, moabs clones..

Bias/Imprecision/Total error

Bias

Degree of agreement between the measured data and the reference values

Imprecision

Within-run imprecision:	Between-run imprecision:
Repeatability of	Samples tested on
samples on same day,	different moments
under same conditions	

Total Error

Determines the uncertainty of the measured values

Inter-operator variability: Evaluates the preanalytic steps

Test with certified reference material

Bias/Imprecision/Total error

Phenotype	% Total Lymphocytes (Range)	Absolute Number/µL (Range)	Population	Population Within-run/Between-run imprecisie + inter-operator variability (SUBSETS)																	
CD3 ⁺ CD4 ⁺	46.9 (40.4 - 53.4)	749.9 (599.9 - 899.9)	Day	DAY	1					DAY2						DAY3					
CD3 ⁺ CD8 ⁺	23.6 (16.6-30.6)	377.4 (272.1 - 482.6)	Sample type																		
CD3 /CD16+CD56 ⁺	13.8 (9.8 - 17.8) 11.4 (44 - 184)	220.7 (152.7 - 288.6) 182.3 (96.6 - 268.0)	specification	Mult	check					Multic	heck					Multicheck					
CD3+HLA-DR+	6.1 (3.1-9.1)	NA	Timepoint	VM		MIDDA	AG	NM		VM		MIDDA	١G	NM		VM		MIDDA	G	NM	
CD45 ⁺ /CD14 ⁻	95.0 (95.0 - 100.0)	NA	Operator	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
			Replicate 1 (%)																		
			Replicate 2 (%)																		
			Replicate 3 (%)																		
			Mean (over replicates)																		
			SD (over																		
	Calcu	late the	replicates)																		
	Calcu		% CV (over																		
	MEAN	Nover all	replicates)							ļ										ļ'	
	days/	renlicates	Satisfy criteria <10 %																		
		repricates	<25% (bolow 5%)																		
Dicc = /N/		\/terest	<35%																	'	
Blas = (IVI	EAN – target	j/target	(below 1%)																		
			Mean %CV (all samples)		Α	NOV	Ά														
	CV = (S	D/Mean)*100	Satisfy criteria?																		

Specifications

Total error = bias + 1.65 x between-run CV

Bia	as		Imprecision			Total Error	
MultiCheck control	<10% (T and NK) <15% (B)	Omana-Zapata		%CV<10%			
Stem Cell Control	<15% (for % and abs) Expert opinion	Imprecision	%CV<35%	Selliah et al.		
Range company	Comply with range	Specs BD	Inter-operator	Similar %CV	Selliah et al.	Acceptable error <25%	Expert opinion

Method comparison (accuracy)

- Optimally 30 samples (spread over entire measuring range)
- Passing bablok regression

Populat e	Regressie vergelijking	Intercept A	95% CI	Slope B	95% CI	Conclusie
T-cells	y = 1.299601 + 0.9858 90 x	1.2996	-3.1895 to 6.1047	0.9859	0.9196 to 1.0442	No difference
		Contains 0 \rightarrow no systematic error		Contains 1 \rightarrow No proportion		

Specifications

The intercept	should not differ significantly from 0	
The slope	should not differ significantly from 1	Omana-Zapata

Method comparison (accuracy)

• Bland-Altman analysis

=graphical method in which the **differences** between the two techniques are plotted against the **averages** of the two techniques.

Horizontal lines are drawn at the mean difference, and at the limits of agreement (which are defined as the mean difference ±1.96 times the standard deviation of the differences)

Usefull method:

- To look for relationship between the differences and the magnitude of measurements
- To illustrate systematic bias
- To identify outliers

Specifications

<20% <25% (below 5%) Mean %bias <35% (below 1%)

Selliah et al.

Method comparison (accuracy)

Semi-quantitative assays	Percentage blasts		Matrix	Lyric	: 140	Lyric 1	L42	Ca	nto	% Bias	Lyric 140	% Bias Lyı	ric 142	
	1	Samp	ole 1	PB	56.4	8	56.57		52	.55	7.5%		7.6%	
	2	Samp	ole 2	BM	15		14.79		13	.66	9.8%		8.3%	
		-						Μ	ean %	% bias	8.6%		8.0%	
			Sample 1			Sampl	e 2					Sample 3		
Qualitativo accavo	Ma	arker	Lyric 142	Canto	II	Lyric 1	40	Lyric	142	Canto	o II	Lyric 140	Lyric 142	Canto II
Qualitative assays	CD	011b	neg	neg		neg	I	neg		neg		neg	neg	neg
	CD)7	neg	var		neg	1	neg		neg		var	var	var
	CD	22	neg	neg		weak p	oos v	weak	k pos	pos		neg	neg	neg

Specifications

Semi-quantitative results	%Bias <20% <25% (below 5%) <35% (below 1%) No impact on clinical interpretation	Selliah et al. Expert opinion
Qualitative assays	Same expression pattern No impact on clinical interpretation >95% concordance between results	Omana-Zapata CLSI H62/CLSI EP12

Other validation parameters

Measures the robustness of the test for older samples (antigen expression and viability may change over time during sample storage)

Other method validation parameters

• LOB/LOD

- → Blanco samples (repeated measurement o f 10 samples)
- \rightarrow LLOD in clinical setting: 5 negative + low-positive samples (clinical setting)
- → Samples: preblock with non-labeled moab, HD samples, Pathological control (post-treatment BM),

depletion with beads

less recommended: FMO/FMX

• <u>LLOQ</u>

- ightarrow Important for rare event analysis
- \rightarrow 3 donors, 5 different levels per donor
 - OR min. 5 clinical samples near the LLOQ
- →Samples: dilutions series after admixing, non-labeled moab and admixing, partial depletion with beads
 - less recommended: cell lines

Pre/non-clinical setting: LLOD = LOB + 1,65 SD (estimation)

<u>Clinical setting:</u> LLOD obtained from 5 neg+ 5 low-positive samples (empirically) Qualitative assays: create an LLOD sample by spiking

Specifications

LOQ: dilution series	N/A for qualitative assays (no LLOQ/linearity)	CLSI H62
	Linearity: R ² as close to 1 as possible	
	CV between 1-20% (table 13)	
LOD: samples with low levels	Qualitative assays: see 6.1.3.1.2 for specs LLOD	CLSI H62
	95% of low levels of measurand will be > LoB no more than 5% of the replicates < target LLoD	
.OB: blank replicates (10x)	no more than 5% of the blank replicates > LOB	CLSI H62

LOB = Mean + 1,65 SD

Wooclap question 5

https://app.wooclap.com/events/JCCAYN/questions/65c3c765b 133df538880e205

Which statement is correct?

- Method validation of an CE-IVD approved assay requires verification of the precision, sensitivity, stability and reference interval ranges
- To assess inter-operator variability, it is important that every operator works separately from the start (split the sample) to be able to evaluate the preanalytic phase
- The total error can be calculated based on Bias and within-run imprecision
- Between-day intermediate precision can only be assessed with biological samples
- If the confidence interval (obtained with Passing Bablok regression) for the intercept does not contain the value 0 we will confirm a proportional error

Validation Plan: example

Instrument Validation (PQ)	Extended PQ (~ intended use)	Method validation	Addenda
Linearity	Acquisition speed	Bias	Software calculations
Dynamic Range	Storage capacity	Imprecision	Workflow manager
(Light scatter) Sensitivity	Light scatter resolution	Total error	Automatic export raw data
Electric Noise	Small particle resolution	Method comparison	Changes in panels
Carry over	Cross- instrument/lab standardization	Other parameters	New panels (12 colors)

Software calculations

Expression Properties	×	
Expression Formatting		
Name Expression 1		
+ - * / ^ In log abs () > < =	2 4 #	
3 > 2		
 Advanced Search 		
Conditional Expression Results:		
If True: Pass • If Fa	lse: Fail 👻	
Result Pass		Ļ
		•
CD4/CD8 ratio: 1.7	Lower boundary: 1.00	Higher boundary: 3.60
CD4/CD8 ratio within reference range	? PASS	
kappa/lambda ratio: 1.9	Lower boundary: 0.60	Higher boundary: 2.30

Expressions : program a mathematical formula
Expression range : test againt a reference interval
Conditional expressions (FAIL/PASS) possible
Automatic calculation based on statistics/keywords
Validate every calculation on at least 5 samples:
→ compare manual calculation with software calculation

Specifications

Software calulcations (expressions) must correspond to the manual calculation Up to 2 decimals BD sp

BD specifications

Workflowmanager

Middelware; works BI-DIRECTIONALLY with the LIS: Sample information (REQUESTS) from LIS \rightarrow Lyric RESULTS from Lyric \rightarrow LIS

- = automated data transfer
- + Reduces workload
- + Reduces manual intervention in patiënt data handling
- + Encrypted data!

Only for assays acquired on worklist level (CD34, subset,..) Validate 10 to 30 samples per assay

Specifications

Correct patiënt information is
drawn into WFM and FACS SuiteTMSame name/
Sample IDBD specificationsCorrect data transfer to WFM/LISUp to 2 decimalsBD specifications

Automatic export raw data

We developed an efficient workflow
On worklist level: by <u>Approving</u>
→The corresponding FCS/ERP/PDF is automatically exported to the correct folder on the server
On experiment level: still manual export
Web application was developed to retrieve fcs.files easily for further analysis (InfinicytTM/SuiteTM)

Automatic export raw data

Zoeken op	Dichtklappen			
TubeName (Naam van de tube/assay)	SampleName (Naam van het sample)	SampleID (Familienaam Voornaam + eventueel staalnummer)	Toestel	
TubeName bv: F		SampleId bv: 01:	Kies een toes 🗸	
TubeID (Staalnummer)	Acquisition Van	Acquisition Tot	Zoek alle velden met een	
Tubeld bv: 0123	dd/mm/jjjj	dd/mm/jjjj	En	
	Zoek m	et details		

Secured screen in LabPortal that allows us to search and download FCS.files efficiently

Advanced filters also available: specific search

Several validation runs (test phase > production)

All files of a specific patient can be found?
All fcs.files can be retreived? Export exact number of fcs.files and check.
All fcs.files acquired on a specific date can be retreived?
(search with data filters)
FCS.files can be downloaded and heavy files can be downloaded within an
accaptable timeframe and without errors (MM-MRD)
FCS.files can easily be imported in external software (FACSSuite [™] and
Infinicyt [™])
Try to search files by testing out each filter separate and in combination
(device type, Sample ID, Tube id, SampleName,)
AND-function generates more files than OF-function?
Check if the application still works when it contains many files
All fcs.files linked to the same sample ID can be found?

Specifications

Webapplication

(fcs./ERP/PDF)

Automatic export of data files

Possible to retrieve FCS. files based on every possible combination of filters Saved in correct folders

Changes in panels

New TCLPD panel

(on min. 3 samples) **Better resolution**

 \rightarrow Change CD2 and CD7

samples

Specifications

Expression pattern of abberant populations was

compared between the old and new panel on 10

 \rightarrow Check for an increase in staining index

Staining index is increased

Positive impact of change in panel on resolution

 \rightarrow CD7 in APC-R700: too weak

New/extended panels

We added an extra T cell clonality marker in our LST panel (JOVI-1 in BV786)

Investigate the impact on the interpretation of the lymfocyte subpopulations by testing NORMAL and **ABNORMAL** samples

Specifications

Method comparison **Passing-Bablock**

Bland-Altmann

No systematic and proportional differences %bias <20%

Establish reference values for JOVI-1 on CD4+ and CD8+ T cells and compare with literature

Range based on minimummaximum and 95% CI Literature cut-off: <15 and >85%

Comparison with TCR gene rearrangement technique Check klonality of **HEALTHY/ABBERANT** samples

Check accuracy

