
Full Spectrum Flow Cytometry for high-parameter analysis

Susan Schlenner

KU Leuven

Flow Cytometry

A population of cells is hydrodynamically focused into a single cell stream and pulsed with lasers to record fluorescence at different wavelengths and to measure their characteristics.

Flow Cytometry – powerful, high-parameter, single cell proteomics

What can be measured?

- 1) Physical/morphological cell characteristics (scatter)
 - Size, cellular complexity
- 2) Phenotypic profiling and subset definitions
 - Cell surface
 - Transcription factors
- 3) Functional profiling and cellular states
 - Cytokines/chemokines
 - Cytotoxic potential/degranulation
 - Activation/effector mechanisms
 - Migratory potential
 - Proliferation/viability/cell cycle/apoptosis
 - Signalling (phospho-proteome)

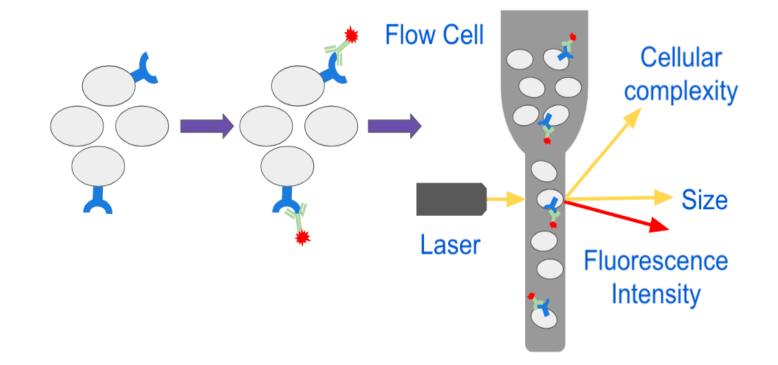
Broad application

Research and diagnostics

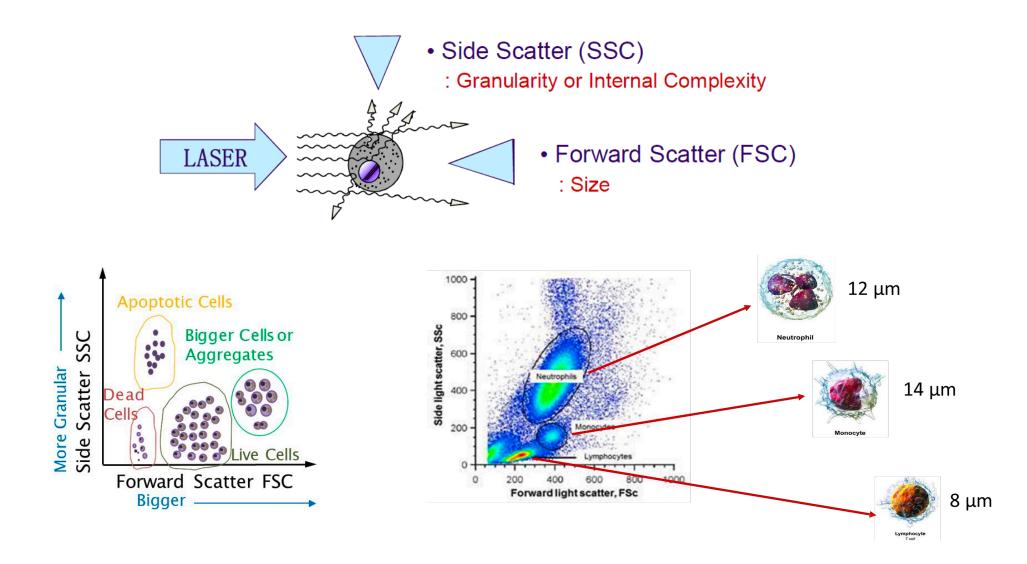
- Pre-clinical disease models
- Clinical samples

Immune-Monitoring = deep immuno-phenotyping (e.g. longitudinal clinical trials)

Immunology and related fields (immuno-oncology, neuroimmunology, infectious disease monitoring, ...), Haematology, **Oncology**, Neurology, Virology and more

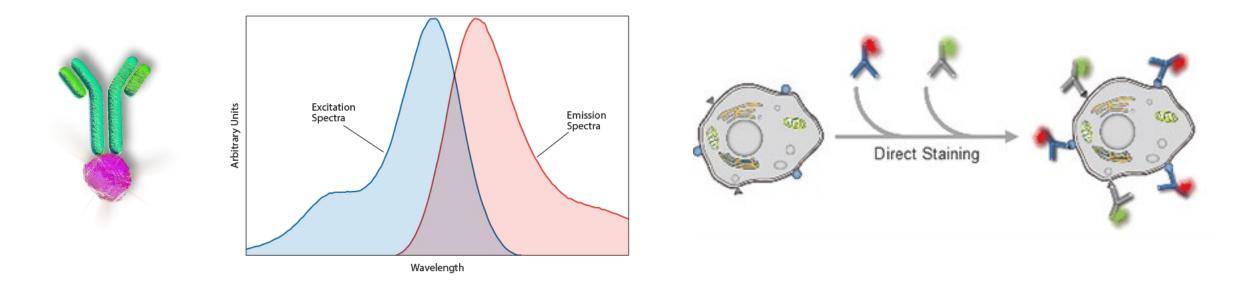

- Dissect cellular composition of blood or tissue samples
- Biomarker analysis: Identify pattern/markers related to disease or disease stage or treatment
- Analyse cell viability, cell death, proliferation or cell cycle
- Functional profiling of cells (e.g. stimulating/inhibiting molecules, chemokines, cytokines)

• ...

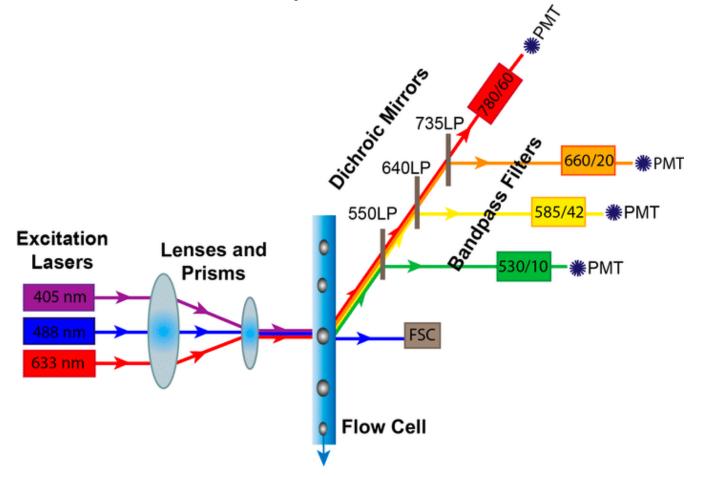

What does flow cytometry NOT do?

- Spatial information / tissue architecture is lost
 - high-parameter IHC = protein level
 - spatial transcriptomics = RNA level
 - CyTOF Hyperion
- Secreted proteins: what is produced is not necessarily secreted
 - IsoPlexis technology
 - (cytokine capture assays not multiplexed)
- No information on intracellular sublocation of proteins
 - Image Cytometry

The Principle

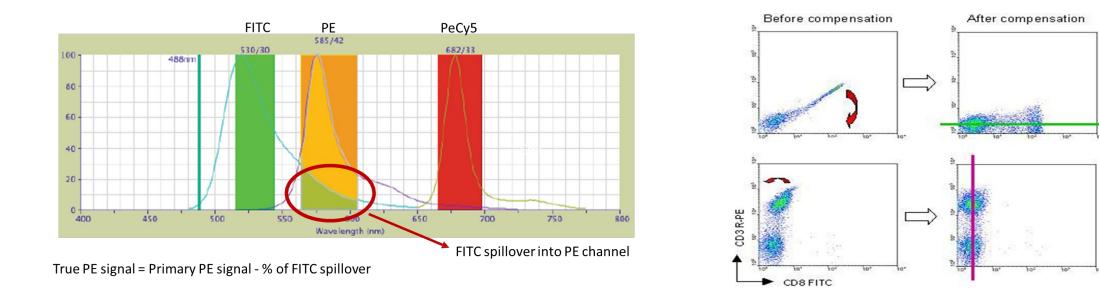


Morphological characteristics


Proteome profiling

• Staining cells with fluorochrome-labelled antibodies

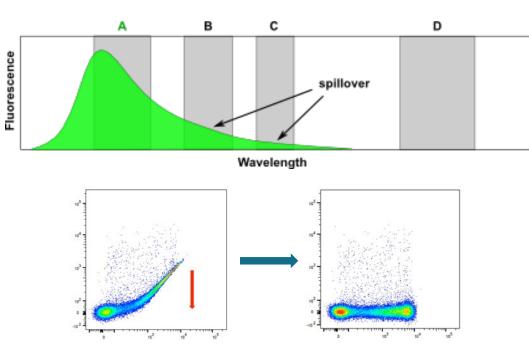
- 1) The flow cytometer must be able to excite the fluorochrome (correct laser wavelength).
- 2) The flow cytometer must be able to measure the emitted fluorescence (correct detector).


Conventional Flow Cytometer

The number of detectors represents the maximal number of fluorochromes that can be detected

Compensation

Process of correcting for spectral overlap in each detector via subtraction.


The need for compensation can be overcome in other flow cytometric technologies

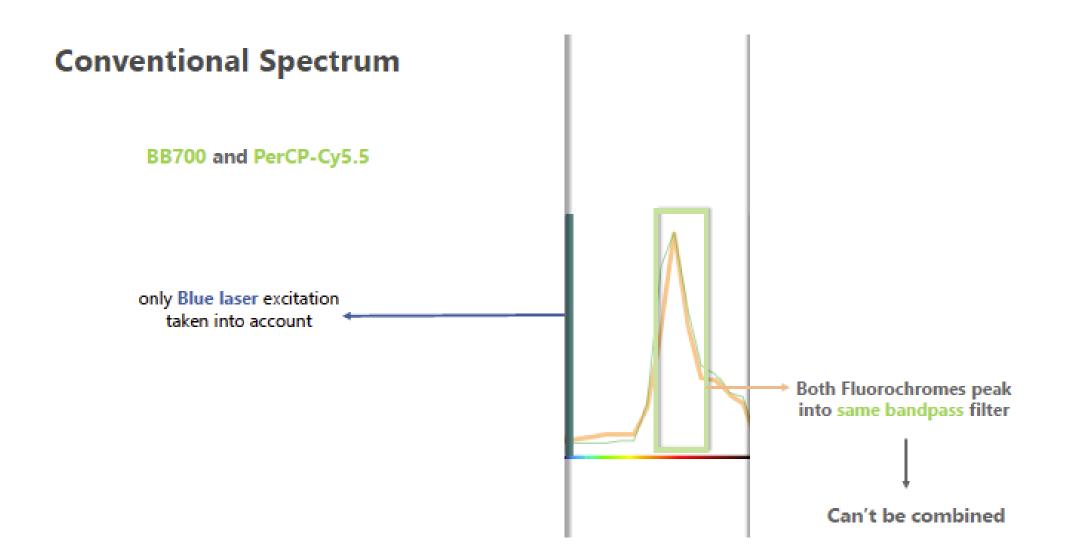
- Mass cytometry
- Full spectrum flow cytometry

Flavours of Cytometers

Conventional Flow Cytometry

- Mass Cytometry
- Spectral Flow Cytometry
- Imaging Flow Cytometry

✓ all flow cytometric applications × limited number of markers (~20-25 parameters) × not all dyes can be combined × suffers from spill-over of fluorescence emission between markers × requires pre-analysis data processing × may not reflect antibody-conjugate quality × autofluorescence of cells impacts sensitivity / resolution

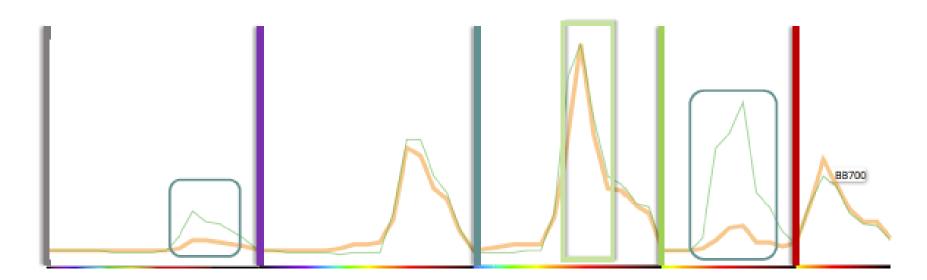

Full Spectrum Flow Cytometry – a transformative technology –

Conventional / Polychromatic Flow Cytometry

- Employs mirrors & optical filters to reflect, block, or transmit photons based on wavelength
- Uses ONE detector ONE fluorophore setup
- Only a fraction of the emission spectra are recorded
- Fluorophores are defined through specific wavelength
- Similar fluorphores are difficult to distinguish
- Requirement for several staining panels
- Autofluorescence can hamper analysis

Spectral Flow Cytometry

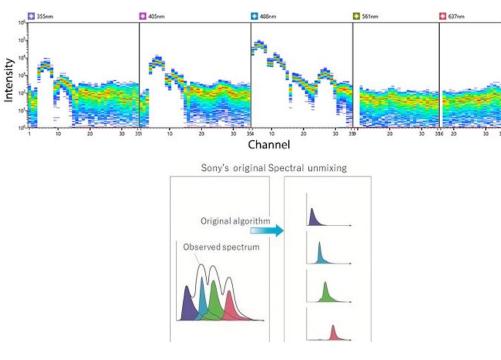
- Employs dispersive optics such as prisms to disperse photons according to wavelength across an array of detectors
- All detectors capture a signature of the full emission spectra of fluorophores, ie. collect entire spectral profile (depending on available lasers)
- Fluorophores with similar emission spectra can be distinguished
- Merging of panels, design of complex panels saves sample and reagents
- Autofluorescence is treated as another 'color' and can be removed allowing for clearer identification of dim fluorescent signals



Full Spectrum Signature

BB700 and PerCP-Cy5.5

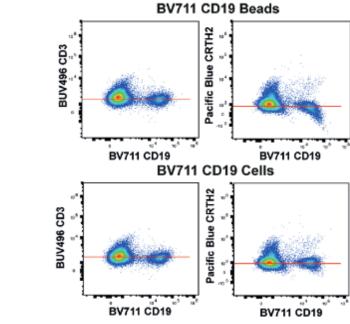
Uses Signal generated by every laser


Fluorochrome is measured in all available detectors

Distinguish fluors with 2% spectral difference (Similarity Index™≤0.98

Flavours of Cytometers

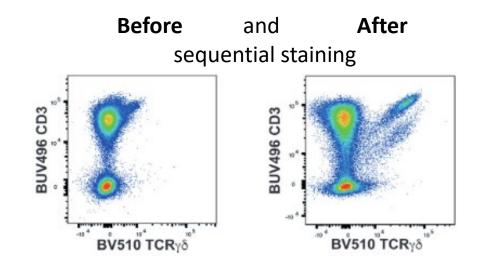
- Conventional Flow Cytometry
- Mass Cytometry
- Spectral Flow Cytometry
- Imaging Flow Cytometry


- \checkmark all mentioned applications
- ✓ simplified panel design
- ✓ reads entire spectrum (spectral fingerprint)
- \checkmark can combine more (similar) fluorochromes \rightarrow
 - very high parameter panels (35+)
- In compensation -> uses spectral unmixing
- ✓ autofluorescence subtraction
- determine antibody-conjugate quality
- efforts of fluorochrome development focused on spectral applications
- very high throughput

General panel design rules still apply

- antibody titrations
 - pre-gate on expressing cells when titrating a rare marker
 - if necessary, titrate on surrogate cells and validate on tissue of interest
 - calculate stain index and chose ab concentration where SI peaks (without positive shift of negative population)
- fluorophore assignment
 - bright fluorophores for low abundance antigens and vice versa
 - avoid very similar fluorophores for co-expressed antigens
 - know your markers, their expression levels and co-expression pattern
- test different ab clones per marker if optimal one not previously determined
- fluorochromes that create most spillover best assigned to dump or viability channel
 - depends on instrument configuration
- usually AF is high in the UV, V and B regions, therefore preferably choose dyes excited by Y/G or R lasers for highly autofluorescent cells

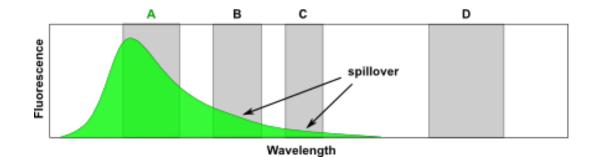
complex panels require detailed optimization


- carefully examine AF peaks in unstained sample and avoid allocating fluorophores that emit where AF dominates
- try beads vs cells as single stained -> determine per fluorochrome which unmixes fully stained sample best (NxN matrix)

E.g. CD19 on cells outperforms CD19 on beads for unmixing

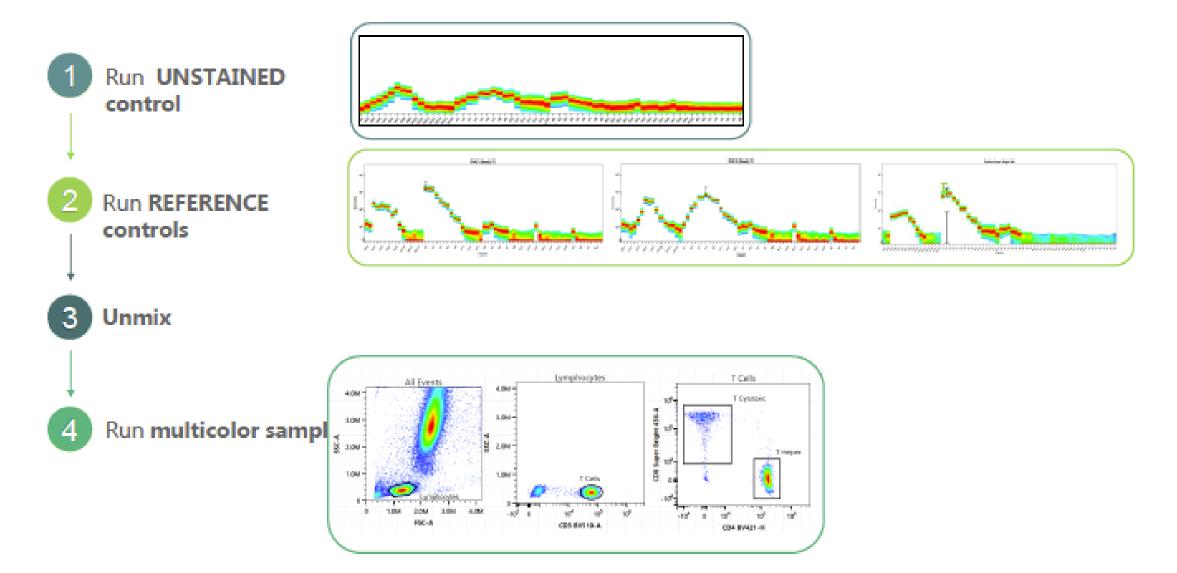
complex panels require detailed optimization

- carefully examine AF peaks in unstained sample and avoid allocating fluorophores that emit where AF dominates
- try beads vs cells as single stained -> determine per fluorochrome which unmixes fully stained sample best (NxN matrix)
- evaluate marker resolution in the fully stained sample
 - loss of resolution? sequential staining or different choice of fluorochromes may help, spillover spreading matrix (SSM) can indicate which fluorochromes are problematic


complex panels require detailed optimization

- carefully examine AF peaks in unstained sample and avoid allocating fluorophores that emit where AF dominates
- try beads vs cells as single stained -> determine per fluorochrome which unmixes fully stained sample best (NxN matrix)
- evaluate marker resolution in the fully stained sample
 - loss of resolution? sequential staining or different choice of fluorochromes may help, spillover spreading matrix (SSM) can indicate which fluorochromes are problematic
 - increased spread of neg population? check that separation is not impacted, co-expression of markers stained with very similar fluorochromes not considered?

controls for accurate unmixing and analysis


- spectral reference controls and unstained cells
 - beads or cells
 - must be treated IDENTICAL to fully stained samples
 - pos population should be brighter than fully stained sample
 - pos & neg population should have same AF
 - use exact tandem fluorochrome-labelled ab as in fully stained sample
 - the fluorochrome signature of reference controls needs to be assessed to match the expected one (especially with beads)
- unstained control
 - match tissue/sample type(s)
 - assess AF
- fluorescence-minus-one (FMO) for objective cut-offs (gating controls)
 - when pos cells are not clearly separated
 - useful to assess spread of neg cells
- fluorescence-minus-multiple (FMM) can be useful for larger (20+) panels

Spectral Unmixing (instead of compensation)

Instead of removing spectrum information in other channels through compensation ...

Spectral Unmixing (instead of compensation)

Instruments and vendors

Analysers

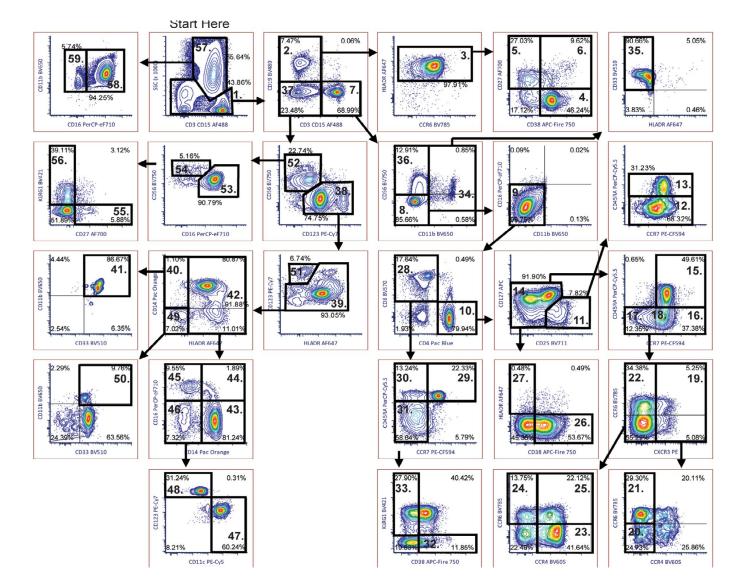
- Sony first commercial spectral analyser, now ID7000 with up to 7 lasers
- Cytek Aurora (up to 5 lasers) and Northern Lights (up to 3 lasers)
- BD Symphony A5 SE (<u>spectral-enabled</u>)

Cell sorters (unmixing in real-time to make sorting decisions)

- Cytek Aurora CS
- Thermo Big Foot (cell sorter)
- Sony to release its spectral sorter
- BD FACSDiscover S8 (spectral imaging sorter)

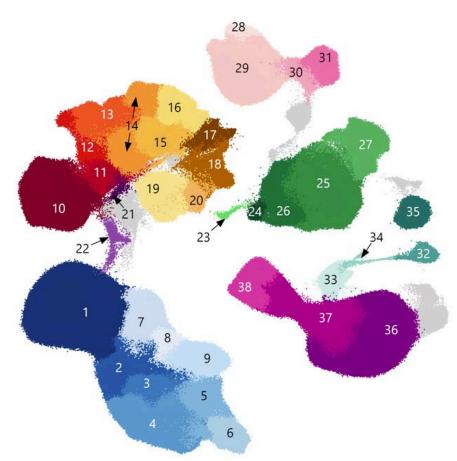
Applications – Deep Immune-Monitoring

- Off-the-shelf staining kits
- Optimised Multicolor Immunofluorescence Panels (OMIPs)
- Published antibody panels
- Own antibody panel design
 - Use panel design tools such as FluoroFinder or Cytek
 - Use panel design services by commercial vendors
- pitfalls / considerations to careful control for
 - decomposing tandem dyes
 - probe-probe interactions between molecules bound in/on a cell



Applications – Deep Immune-Monitoring

Example 1


- 25-color panel on spectral flow cytometer
- Gating 50 populations -> but >400 marker combinations possible

OMIP-069 – Human PBMC immune-phenotyping

40-color panel for spectral flow cytometer

Describes activation and functional subsets of

- Basophils
- Monocytes
- gd T cells
- NKT-like cells
- NK cells
- Regulatory T cells
- B cells
- Conventional CD4 T cells
- CD8 T cells
- Dendritic cells
- Innate lymphoid cells

Naive CD4*
 Central Memory CD4*
 Early Effector CD4*
 Early Effector CD4*
 Early Effector CD4* PD-1*
 CD4* CD57*
 CD4* CD127¹⁰ CD25** CD4SRA*
 CD4* CD127¹⁰ CD25** CD4SRA* CD39*
 CD4* CD127¹⁰ CD25** CD4SRA CD39*

10 Naive CD8*
11 Central Memory CD8*
12 Early Effector CD8*
13 Intermediate Effector CD8*
14 CD8* CD45RA* CCR7
15 CD8* CD45RA*+ CCR7
16 CD45RA Terminal Effector CD8*
17 CCR7* CD45RA*+ TCRy6*
18 CCR7* CD45RA*0 TCRy6*

- 19
 CD2* CD8* NKT-like

 20
 CD2* CD8 NKT-like

 21
 CD4* CD8*

 22
 CD4* CD8*

 23
 ILCs

 24
 Early NK

 25
 Mature NK

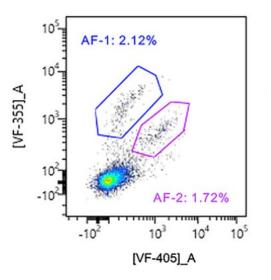
 26
 CD159a* NK

 27
 Mature NK CD159c*
- 28 IgD* CD27* B cells
 29 IgD* CD27* B cells
 30 IgD Memory
 31 IgG* B cells
 32 pDCs
 33 CD1c* DCs
 34 CD1c- CD141* DCs
 35 CD45^{stt} CD123* HLA-DR* Basophils
 36 Classical Monocytes

37 Intermediate Monocytes38 Non-classical Monocytes

Applications – high-dimensional immunemonitoring

- Identification and quantification of cell populations
- longitudinal immune-monitoring
- Description of cell population and gradually zooming into cell populations through various protein markers
- insight on maturation, activation, function & migratory potential
- clinical samples and pre-clinical models
- 100s of cell subsets in a single panel
- unsupervised analysis
- identification and follow-up of
 - biomarker-to-disease correlation
 - biomarker-to-treatment correlation
- genotype-to-phenotype correlation


Applications – Autofluorescence as parameter

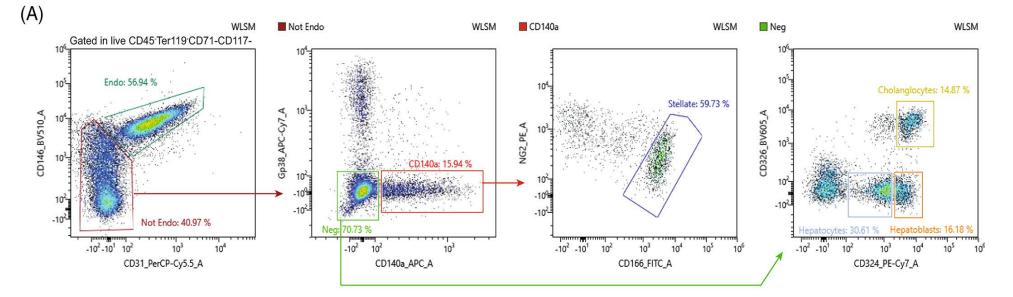
- source of background that interferes with the signal from dim fluorophores and/or low abundance markers
 - resolution of dim signals from various sources of background
- can arise from several endogenous metabolites, amino acids and other molecules
- rich source of information about cell state / cell content

Applications – Autofluorescence as parameter

Cytometry	Journal of Quantitative Cell Science	
Original Article 🔂 Open Access 💿 🕢 🚱		
Identification of fetal liver stroma in spectral cytometry using the parameter autofluorescence		
Márcia Mesquita Peixoto, Frai Sophie Novault, Ana Cumano	ncisca Soares-da-Silva, Sandrine Schmu 💌 Cedric Ait-Mansour	tz, Marie-Pierre Mailhe,

- fetal liver stroma stained for ID7000 plus use 'autofluorescence finder' option on unstained sample
- identified two distinct autofluorescence emission spectra

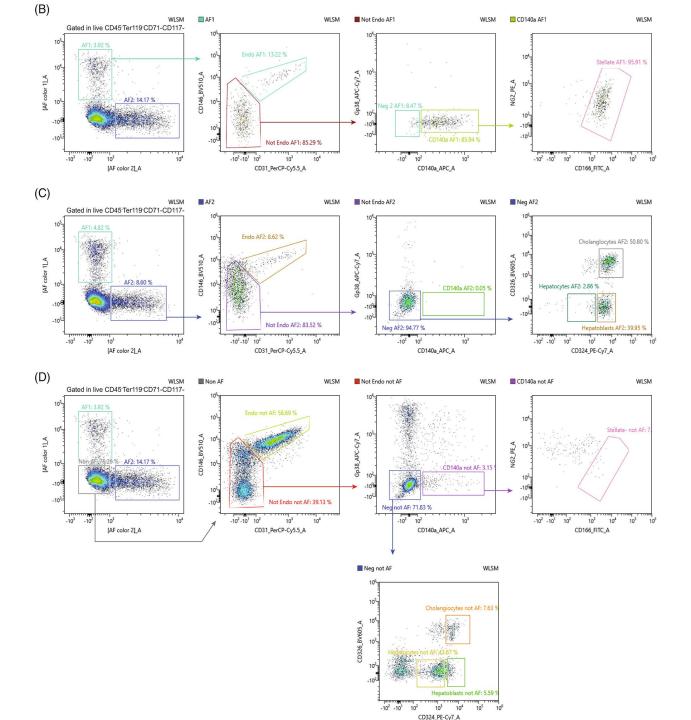
Applications – Autofluorescence as parameter



Márcia Mesquita Peixoto, Francisca Soares-da-Silva, Sandrine Schmutz, Marie-Pierre Mailhe, Sophie Novault, Ana Cumano 🔀, Cedric Ait-Mansour

- FL stroma stained for ID7000 plus use 'autofluorescence finder' option on unstained sample
- identified two distinct autofluorescence emission spectra
- Using autofluorescence as a fluorescence parameter we could assign the two autofluorescent signals to three distinct cell types and identified surface markers that characterize these populations
- autofluorescence used as a parameter in spectral FCM is a useful tool to identify new cell subsets that are difficult to analyze in conventional FCM

antibody staining identifies


- stellate cells
- cholangiocytes
- hepatocytes
- hepatoblasts

Autofluorescence finder function identifies two distinct autofluorescence emission spectra

set these as parameters = 3 populations

- AF1 = stellate cells
- AF2 = cholangiocytes and hepatocytes
- 'DN cells' = enriched in hepatoblasts

Spectral FC in clinical environments

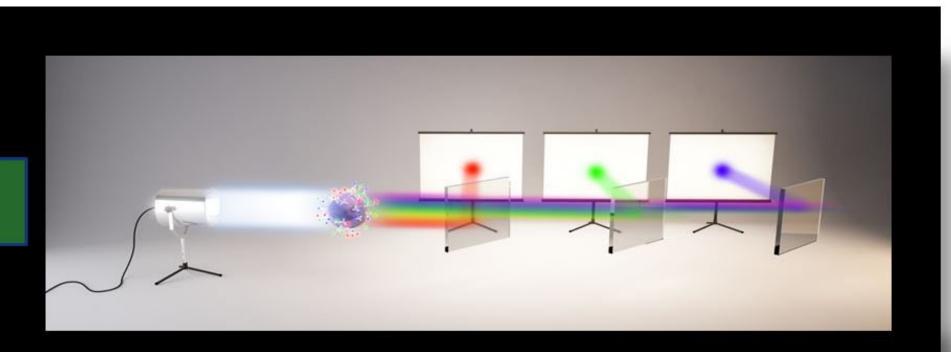
- requires CE-marked instruments complient with the European In-Vitro Diagnostic Devices Directive (IVDD 98/79/EC) = CE-IVD instruments
 - Cytek Northern Lights-CLC
 - Cytek cFluor 6-color TBNK-SL assay
- limited application yet but will slowly outcompete polychromatic FC also in clinical/diagnostic settings
 - fusion / expansion of panels e.g.
 - ease of analysis
- requires adjustments of FC-related inspection lists

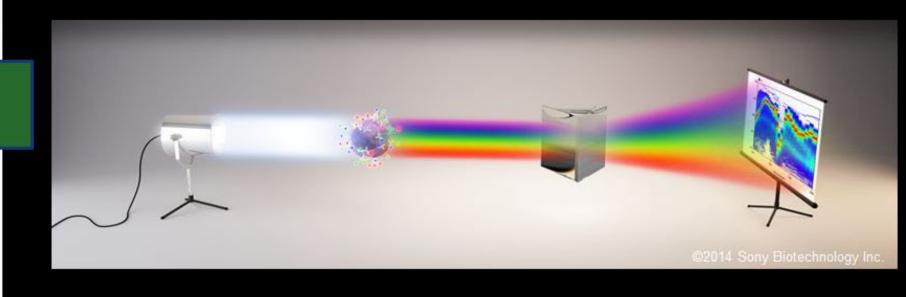
promising clinical use cases call for efforts to 'spectrally update'

- 27-color single-tube assay¹
 - using a 3-laser Cytek Aurora for detection of measurable residual disease in patients diagnosed with acute myeloid leukemia
 - the lower limit of detection for identifying abnormal myeloblasts was 0.0013% in limiting dilution studies, indicating excellent sensitivity
- 24-color single-tube²
 - t-SNE successfully identified abnormal cell types, suggesting that machine learning algorithms may have diagnostic utility for high-dimensional flow cytometry datasets (obviating the need for standard gating strategies)

¹Soh et al, Cytometry A, 2022 ²published as part of the 2020 American Society for Hematology conference

promising clinical use cases call for efforts to 'spectrally update'


- 23-color single-tube assay³
 - on Cytek Northern Lights was compared against 4-tube assay on a BD FACSCanto II
 - comparable results with bone marrow aspirates from multiple myeloma (MM) and non-MM patients
 - very high concordance with quantification of plasma cell abundance in MM patients


Thank you.

Spectral

