

Evolutions in Digital Pathology

And future perspectives

Glenn Broeckx

PA², GZA-ZNA Hospitals (ZAS)

- Breast and gyn pathologist, MD
- Bioinformatician, Bsc
- PhD-student

MB&C Course, UCLL Diepenbeek, 26 September 2023

Disclosures

AstraZeneca: congress support, paid consultancies, research sponsoring IBEX: research sponsoring, congress support Imagene: congress support Johnson and Johnson: paid consultancies, research sponsoring Merck Sharp & Dome (MSD): speaker's fees, paid consultancies, advisory boards Novartis: paid consultancies, speaker's fees Owkin: research sponsoring Roche (Dx and Phx): congress support, advisory boards, paid consultancies

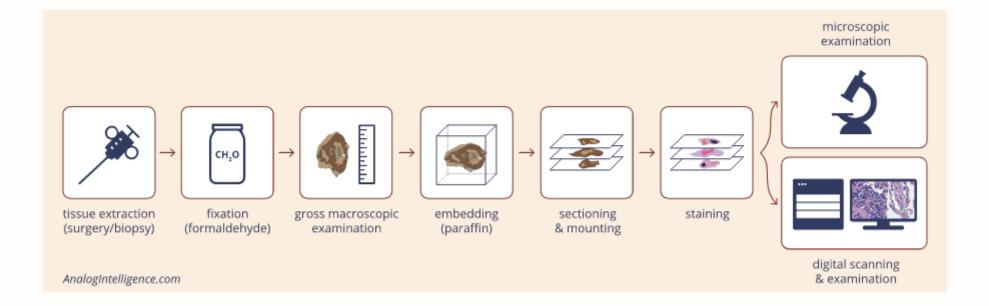
Alumnus Howest Bioinformatics@Home

No AI tools have been used for the creation of this presentation

ZIEKENHUISaan deSTROOM

ZIEKENHUISaan de STROOM

Workflow Pathology Lab



Revolutions in pathology

References:

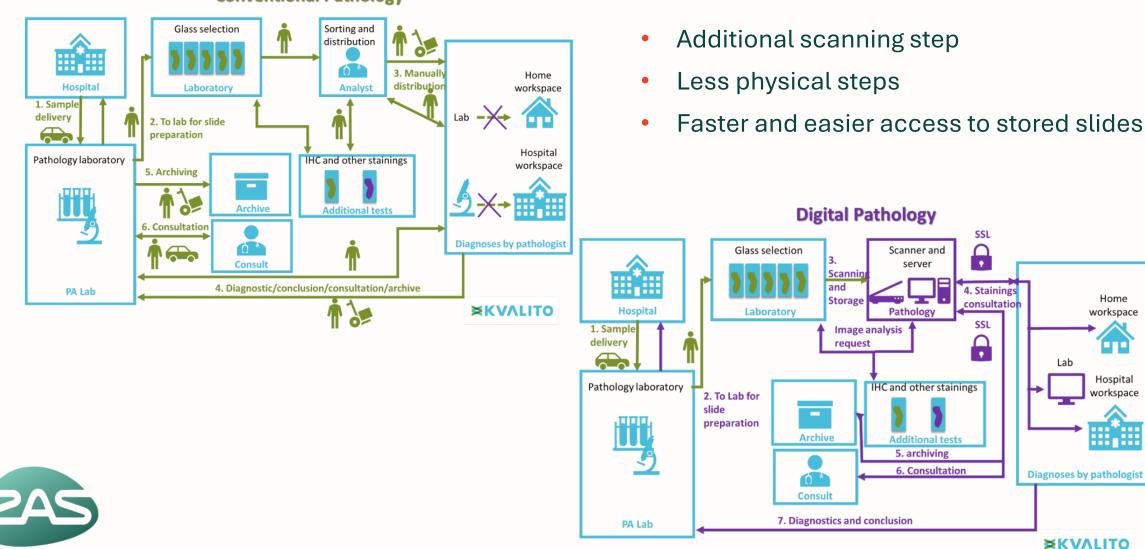
- 1. https://www.leica-microsystems.com/products/light-microscopes/p/leica-dm4000-m/
- 2. https://www.thermofisher.com/be/en/home/brands/ion-torrent.html
- 3. https://www.pacb.com/auto_tags/pacbio-rs-ii/
- 4. https://www.illumina.com/systems/sequencing-platforms/hiseq-3000-4000.html

ZIEKENHUISaan de STROOM

Tools of the pathologist

ZIEKENHUISaan de STROOM

Impact of digital pathology on workflow



Home

workspace

Hospital

workspace

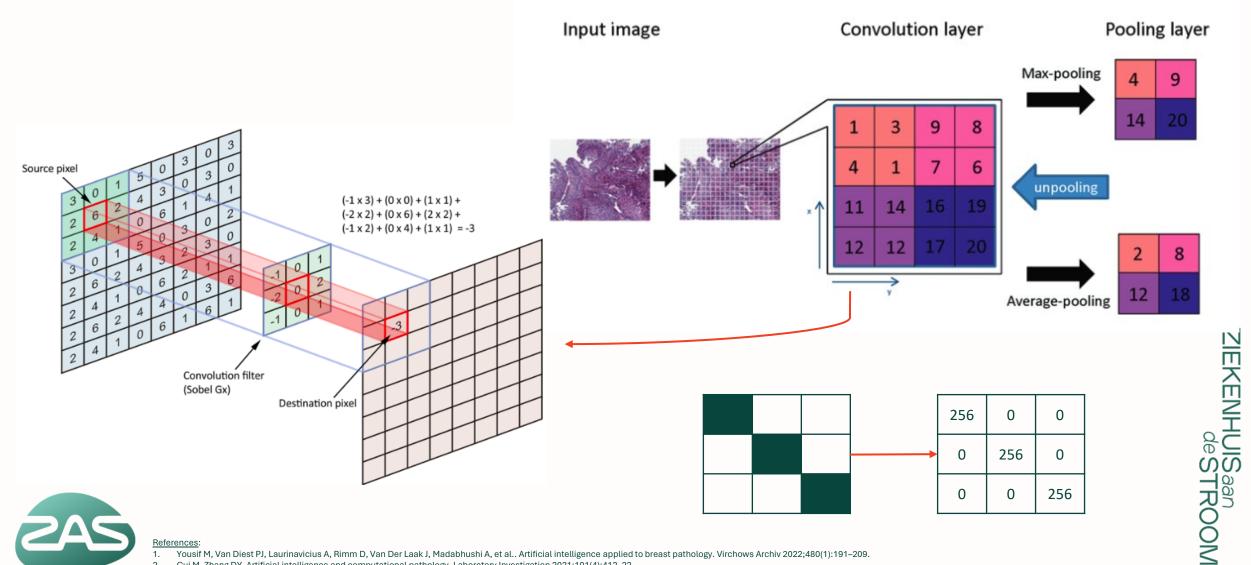
.......

.....

ZIEKENHUISaan de STROOM

Conventional Pathology

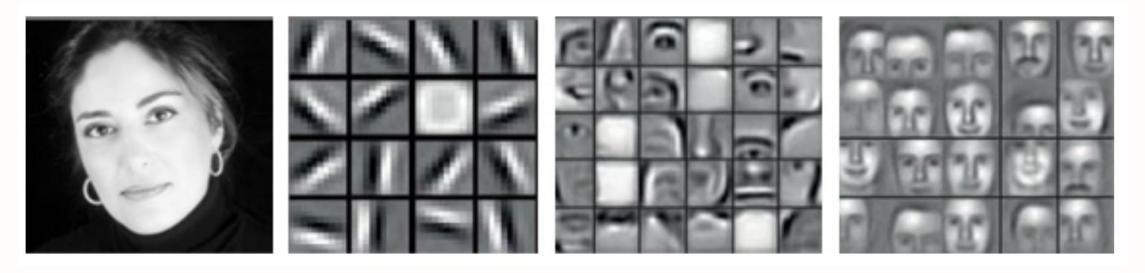
Convolution and pooling (nD)



References:

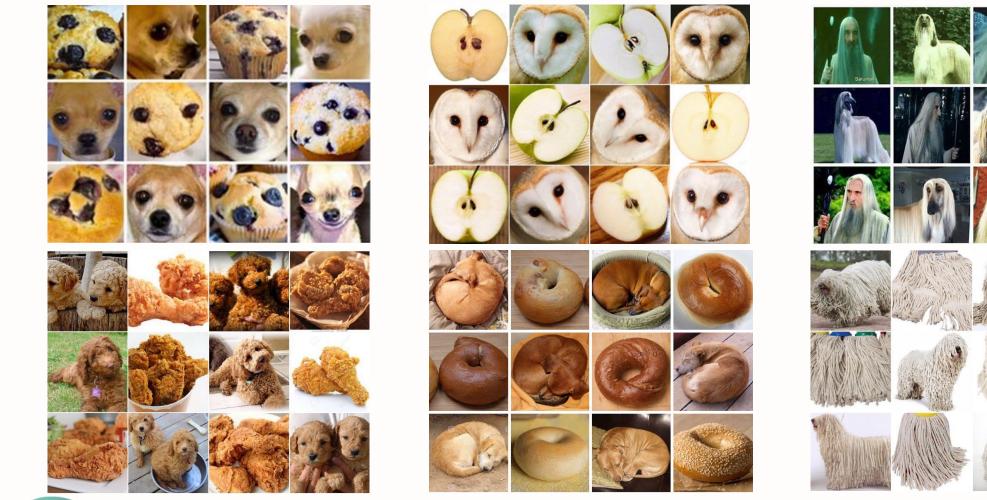
- 1. Yousif M, Van Diest PJ, Laurinavicius A, Rimm D, Van Der Laak J, Madabhushi A, et al.. Artificial intelligence applied to breast pathology. Virchows Archiv 2022;480(1):191–209.
- 2. Cui M, Zhang DY. Artificial intelligence and computational pathology. Laboratory Investigation 2021;101(4):412-22.
- 3. Du S. Understanding Deep Self-attention Mechanism in Convolutional Neural Networks. Published in Al salon on Medium 2020; https://medium.com/ai-salon/understanding-deep-self-attention-mechanism-in-convolution-neural-networkse8f9c01cb251

Deep learning feature extraction



References:
1. Prayuda AJD. The evolution of computer vision techniques on face detection, part 2. Published in Nodeflux on Medium 2018; https://medium.com/nodeflux/the-evolution-of-computer-vision-techniques-on-face-detection-part-2-4af3b22df7c2

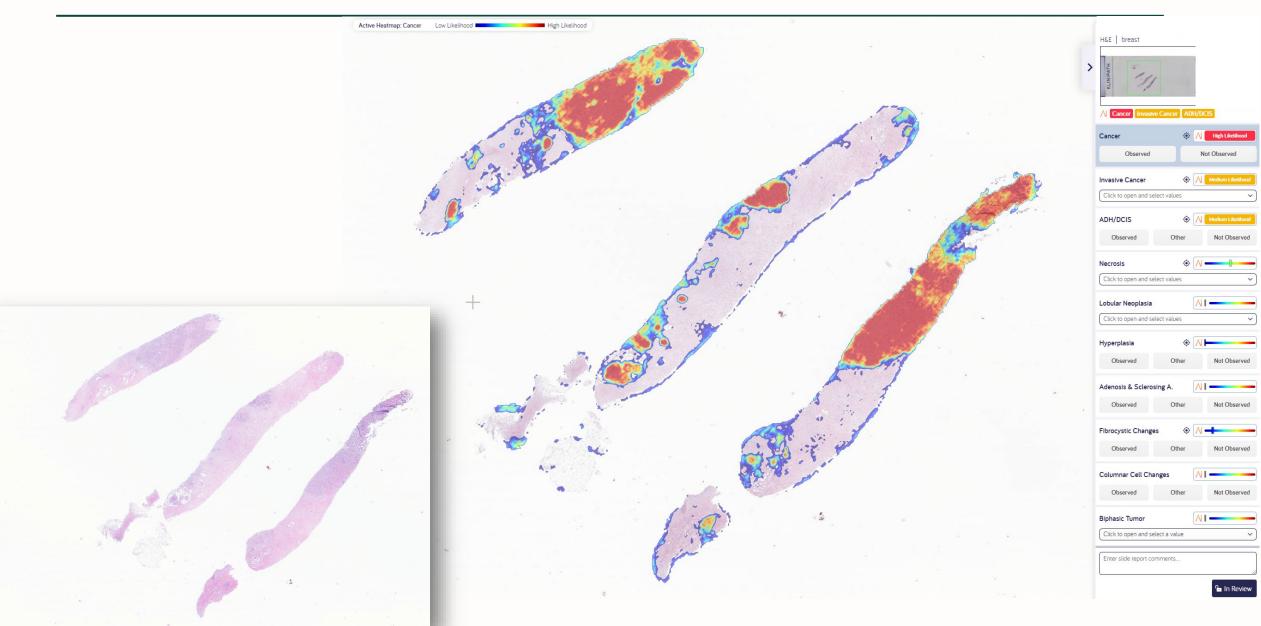
Al optic illusions



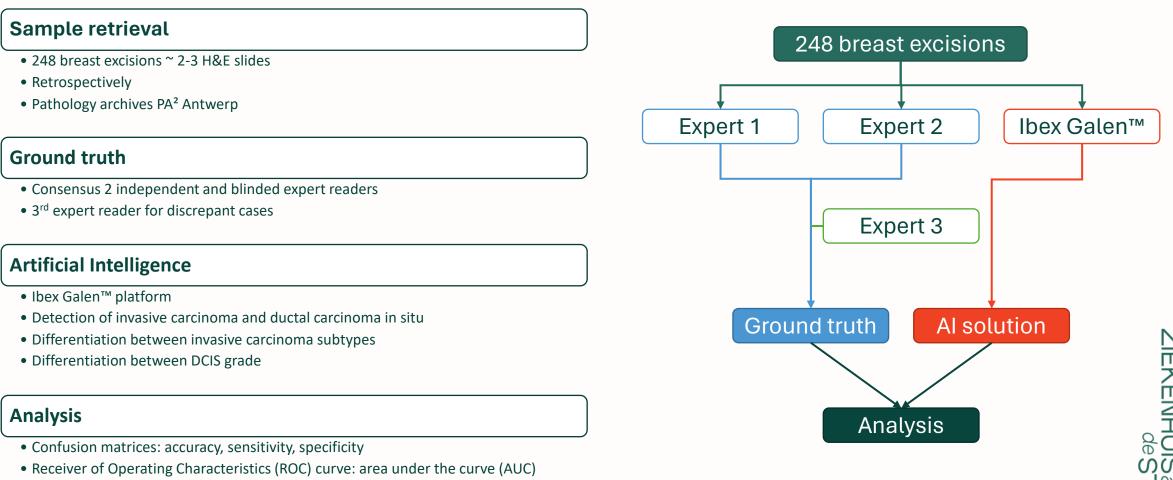
More commercial software



IBEX Galen[™] breast



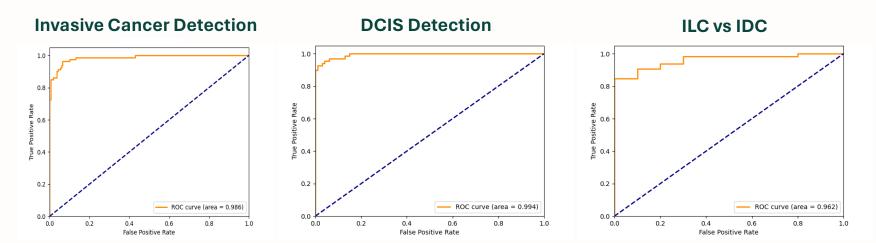
Methods

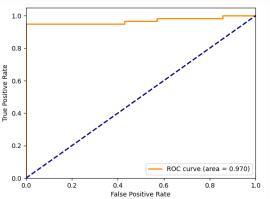


ZIEKENHUISaan deSTROOM

Results: primary endpoints

Analysis	AUC [95% CI]	Sensitivity	Specificity
Detection of invasive carcinoma	0.986 [0.973; 0.998]	89.9% [0.887; 0.996]	96.3% [0.840, 0.939]
Detection of DCIS	0.994 [0.987; 1.000]	95.6% [0.868, 0.995]	95.0% [0.882, 0.986]
Differentiation of subtypes	0.963 [0.922; 1.000]	85.3% [0.742, 0.927]	90.0% [0.541, 1]
Differentiation of DCIS grade	0.970 [0.931; 1.000]	90.2% [0.791, 0.964]	100.0% [0.561, 1]

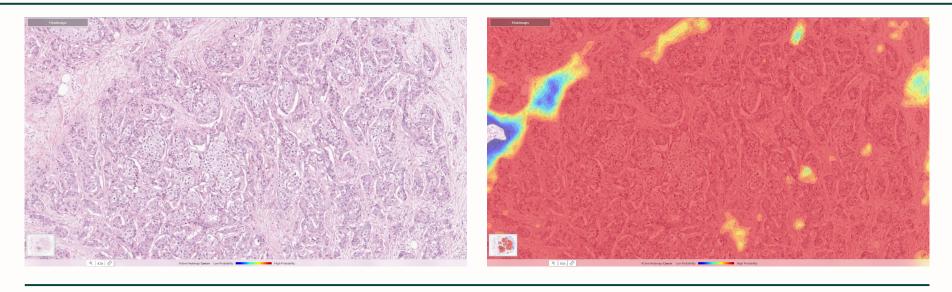


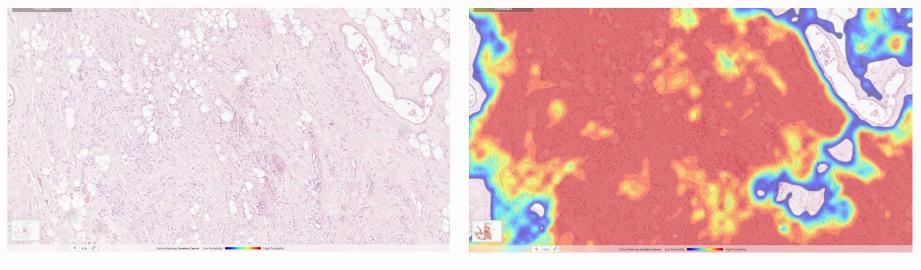


DCIS LG vs HG

ZIEKENHUISaan deSTROOM

Example detection invasive carcinoma NST



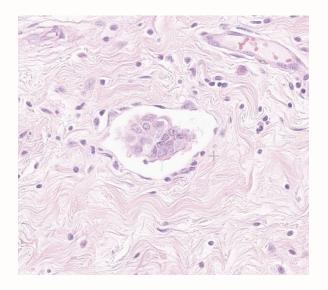


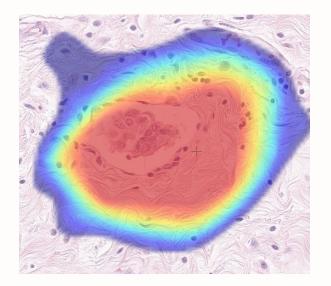
ZIEKENH

HUISaan deSTROOM

Results: exploratory endpoints

Analysis	AUC [95% CI]	Sensitivity	Specificity
Stromal tumor infiltrating lymphocytes (sTILs)	0,958 [0,919; 0,998]	91,4% [0,814; 0,963]	100% [0,851; 1,000]
Detection of lymphatic invasion	0,896 [0,825; 0,968]	72,2% [0,560; 0,841]	86,4% [0,732; 0,936]
Detection of benign lesions	Statistical analysis ongoing		
Detection of biopsy site effects	Statistical analysis ongoing		





Why now AI?

- Task automatisation
- More data (and more complex)
- Need for standardized evaluation
- Reduction in hardware cost
- Opportunities
 - Use of more data(sources) in decision making
 - Integration in clinical trials

ZIEKENHUISaan deSTROOM

1. Yousif M, Van Diest PJ, Laurinavicius A, Rimm D, Van Der Laak J, Madabhushi A, et al.. Artificial intelligence applied to breast pathology. Virchows Archiv 2022;480(1):191–209

2. Cui M, Zhang DY. Artificial intelligence and computational pathology. Laboratory Investigation 2021;101(4):412–22.

More complex algorithms & no human bias

Impact AI on pathology

Workflow optimalisation

- Time consuming tasks: screening for lymph node metastasis, scoring IHC(PD-L1)
- Pre-order technicques
- Automated (structured) reporting
- Standardisation
- Literature: 20-40% efficiency gain (less reporting time) and I-I.5 days TAT gain
- Aid in diagnostics: clear cut cases, "hints" for difficult cases

Change in thinking

- Collaboration: MLT, bioinformaticians, engineers, DPO's
- Diagnostics: know the strengths and weaknesses of AI and models

1. Yousif M, Van Diest PJ, Laurinavicius A, Rimm D, Van Der Laak J, Madabhushi A, et al.. Artificial intelligence applied to breast pathology. Virchows Archiv 2022;480(1):191–209.

2. Cui M, Zhang DY. Artificial intelligence and computational pathology. Laboratory Investigation 2021;101(4):412–22.

AI challenges and remarks

Implementation

- Market = immature and scattered
- High cost of commercial platforms
- No integration in the reimbursement system of the Belgian health care system
- Workflow improvements only possible when closely integrated with LIS/IMS/EPD

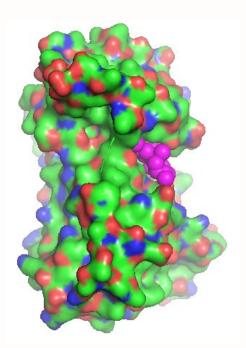
Ethics

- Fairness of data
- Collaboration with non-(para)medici
- What to do if model fails?

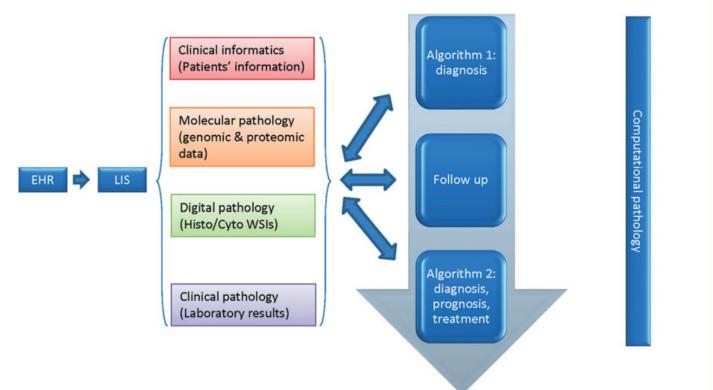
. Yousif M, Van Diest PJ, Laurinavicius A, Rimm D, Van Der Laak J, Madabhushi A, et al.. Artificial intelligence applied to breast pathology. Virchows Archiv 2022;480(1):191–209.

2. Cui M, Zhang DY. Artificial intelligence and computational pathology. Laboratory Investigation 2021;101(4):412–22.

Al future perspectives



References:



1. Yousif M, Van Diest PJ, Laurinavicius A, Rimm D, Van Der Laak J, Madabhushi A, et al.. Artificial intelligence applied to breast pathology. Virchows Archiv 2022;480(1):191–209.

2. Cui M, Zhang DY. Artificial intelligence and computational pathology. Laboratory Investigation 2021;101(4):412–22.

Take home messages

Digitization in pathology

- Workflow improvements
- Source for Al

Artificial intelligence: it's there/coming (due to more (complex) data)

- Need for AI: improved workflow, standardization
- Scattered landscape of AI platforms (+high cost)
- Know strengths and weaknesses of AI and models \rightarrow Trust! (\rightarrow Education!)

Opportunities

- Multimodel learning (other sources e.g. molecular biology)
- Collaborations

Thank you!

Glenn Broeckx Frederik Deman Roberto Salgado, PhD Sabine Declercq, PhD

Questions?

glenn.broeckx@zna.be glenn.broeckx@zas.be

Ziekenhuis aan de Stroom [ZAS] is het netwerk van ZNA en GZA Ziekenhuizen

ZIEKENHUISaan de STROOM