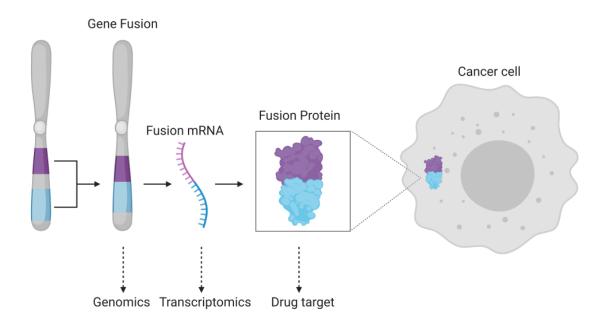
RNA sequencing for the UZA detection of fusion transcripts

am

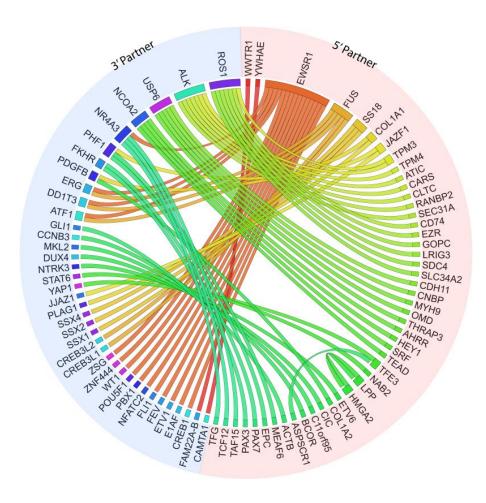

Marie Le Mercier

MB&C course 2024

Gene fusion in cancer

Copyright © BC Cancer. All rights reserved

- Novel gene formed by fusion of two distinct wild type genes
- Produced by somatic genome rearrangements
- >10.000 gene fusions identified in human cancers
- Strong driver alterations



Gene fusions: Diagnostic markers

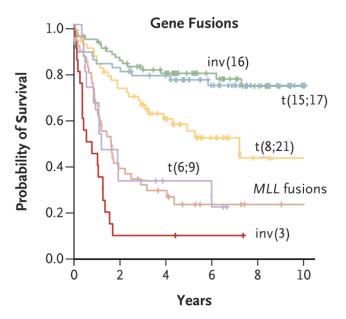
Soft-Tissue Sarcomas

Many different translocations associated with different histological subtypes

Table 2. Chromosomal Translocations	Table 2. Chromosomal Translocations in Soft-Tissue Sarcomas.*				
Type of Tumor	Translocation	Genes Involved			
Synovial sarcoma	t(X;18)(p11.2;q11.2)	SSX1 or SSX2, SYT			
Myxoid or round-cell liposarcoma	t(12;16)(q13;p11)	CHOP, TLS			
	t(12;22)(q13;q11-q12)	CHOP, EWS			
Ewing's sarcoma or peripheral primi- tive neuroectodermal tumor	t(11:22)(q24;q12)	FLI1, EWS			
	t(21:22)(q22;q12)	ERG, EWS			
	t(7;22) (p22;q12)	ETV1, EWS			
	t(2;22) (q33;q12)	FEV, EWS			
	t(17;22)(q12;q12)	E1AF, EWS			
Desmoplastic small round-cell tumor	t(11;22)(p13;q12)	WT1, EWS			
Alveolar rhabdomyosarcoma	t(2:13)(q35;q14)	PAX3, FKHR			
	t(1;13)(p36;q14)	PAX7, FKHR			
Extraskeletal myxoid chondrosarcoma	t(9;22)(q21-31;q12.2)	CHN, EWS			
	t(9;17)(q22:q11)	CHN, RBP56			
Clear-cell sarcoma	t(12;22)(q13;q12)	ATF1, EWS			
Alveolar soft-part sarcoma	t(X;17)(p11;q25)	TFE3, ASPL			
Dermatofibrosarcoma or giant-cell fibroblastoma	t(17;22)(q22;q13)	COL1A1, PDGFB1			
Infantile fibrosarcoma	t(12;15)(p13;q25)	ETV6, NTRK3			
Low-grade fibromyxoid sarcoma	t(7;16)(q34;p11)	FUS, BBF2H7			

Clark et al., NEJM 2005

Gene fusions: Diagnostic/prognostic markers

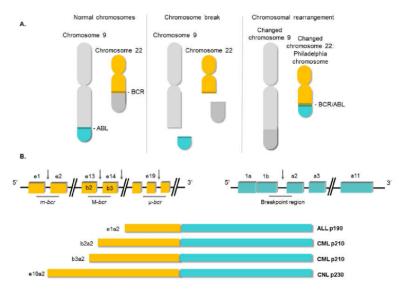

Genomic Classification in AML

RUNX1~40% MLL-PTD~25% KIT~25% NRAS ~20% FLT3-ITD ~35% ASXL1~20% DNMT3A ~20% Cohesin^a ~20% ASXL2~20% No drivers No class FLT3-TKD ~15% SRSF2~20% STAG2~15% IDH2R172 1% t(15;17)(q22;q21); PML-RARA ZBTB7A ~20% ASXL1~10% 5% 13% WT1~15% NRAS~15% FLT3-ITD ~15% EZH2~5% KDM6A ~5% DNMT3A ~70% TET2~15% BCOR~10% MGA ~5% DHX15~5% U2AF1~10% PHF6~10% t(8;21)(q22;q22.1); RUNX1-RUNX1T1_ NRAS~40% 7% ZRSR2~5% SF3B1~10% KIT~35% EZH2~5% inv(16)(p13.1q22);^b CBFB-MYH11 Chromatin-spliceosome FLT3-TKD ~20% 13% KRAS ~15% KRAS ~20% t(v;11q23.3); X-KMT2A 4% TP53 mutant -NRAS ~20% chromosomal aneuploidy^d 10% t(9;22)(q34.1;q11.2); BCR-ABL1 1% FLT3-ITD ~70% KRAS ~20% t(6;9)(p23;q34.1); DEK-NUP214 1% t(5;11)(q35.2;p15.4); NUP98-NSD1 1% FLT3-ITD ~85% biCEBPA mutant 4% inv(3)(q21.3q26.2);° GATA2,MECOM 1% GATA2~30% Other rare fusions 1% NRAS ~30% NRAS ~30% KRAS~15% WT1 ~20% t(3;5)(q25.1;q35.1); NPM1-MLF1 PTPN11 ~20% SF3B1 ~20% CSF3R ~20% t(8;16)(p11.2;p13.3); KAT6A-CREBBP ETV6~15% GATA2~15% t(16;21)(p11.2;q22.2); FUS-ERG NPM1 mutant 30% PHF6~15% RUNX1~10% t(10;11)(p12.3;g14.2); PICALM-MLLT10 BCOR ~10% ASXL1~10% DNMT3A ~50% FLT3-ITD ~40% Cohesin^a ~20% NRAS ~20% t(7;11)(p15.4;p15.2); NUP98-HOXA9 NF1~10% IDH2R140~15% IDH1 ~15% PTPN11~15% TET2~15% t(3;21)(q26.2;q22); RUNX1-MECOM

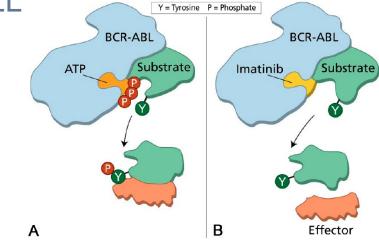
Döhner et al., Blood 2017

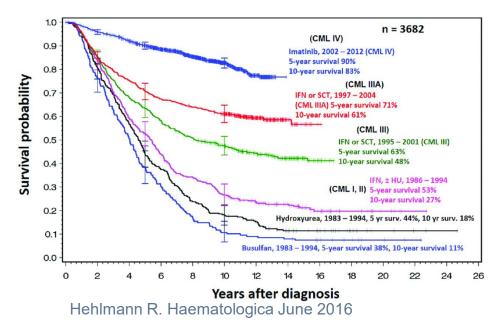
WHO 2017

Papaemmanuil et al., NEJM 2016


Risk Category ^b	Genetic Abnormality	
Favorable	 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1^b inv(16)(p13.1q22) or t(16;16)(p13.1;q22) Mutated NPM1^{b,d} without FLT3-ITD bZIP in-frame mutated CEBPA^e 	Allogenic HCT not recommended
Intermediate	 Mutated NPM1^{b,d} with FLT3-ITD Wild-type NPM1 with FLT3-ITD t(9;11)(p21.3;q23.3)/MLLT3::KMT2A^{b,f} Cytogenetic and/or molecular abnormalit 	Allogenic HCT recommended for
Adverse	 t(6;9)(p23;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged⁹ 	most cases
	• t(9;22)(q34.1;q11.2)/BCR::ABL1	
	 t(8;16)(p11;p13)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q 	Allogenic HCT
	 t(3q26.2;v)/MECOM(EVI1)-rearrang -5 or del(5q); -7; -17/abn(17p) 	recommended
	 Complex karyotype,^h monosomal karyoty Mutated ASXL1, BCOR, EZH2, RUNX1, Mutated TP53^k 	pe ⁱ SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2 ⁱ

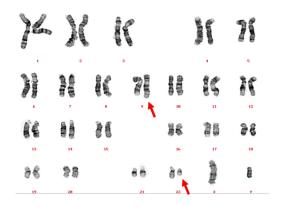
Döhner et al., Blood 2022

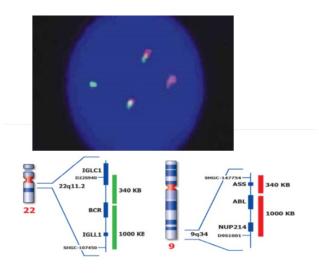



Gene fusions: Targetable alterations



T(9;22) BCR-ABL1 - Philadelphia chromosom (Ph)

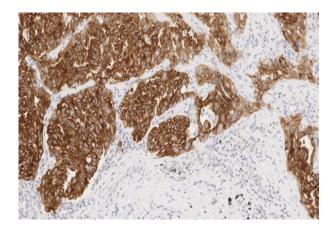

Gene fusions: Targetable alterations


Guo H et al., Cells 2022

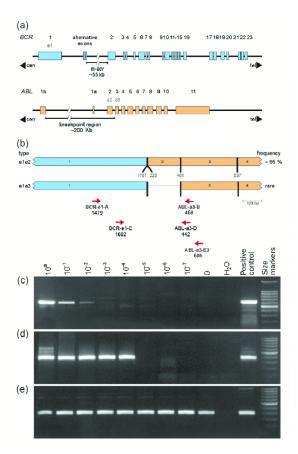
Classical detection methods

<u>Karyotype</u>

FISH

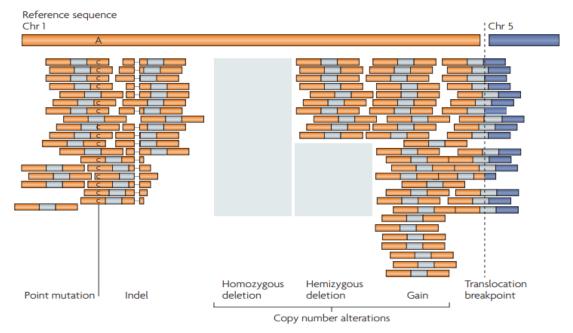

Karyotype & in situ-hybridization (F)ISH:

- Still Gold standard in certain discipline (BCR-ABL1, PML-RARA, ALK-EML4....)
- Necessity of cell culture (Karyotype)
- One FISH per gene, Only for known targets
- Time consuming
- Cost


Classical detection methods

<u>IHC</u>

- Fast, sensitive and affordable
- One target and only for Known targets


Translocation Screening

- RT-qPCR HemaVision®
 - CE/IVD Kit
 - Screening for 28 different fusion transcripts
 - Acute Leukemia (AML, ALL)
 - Still a limited in number of targets
 - Only Known fusion transcript

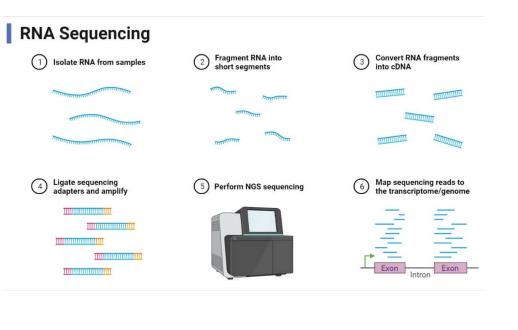
=> High Throughput = NGS

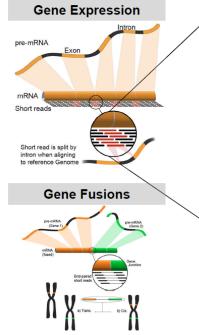
ube	Translocation	Fusion Gene	Fw primer - Rev primer	Fluoroc	hrome
1	t(15;17)(q24;q21)	PML-RARA (bcr2, V)	PML ex5-RARA ex3	FAM	CY5
1	inv(16)(p13;q22)	CBFB-MYH11	CBFB ex3-MYH11 ex30	ROX	CY5
	inv(16)(p13;q22)	CBFB-MYH11	CBFB ex4-MYH11 ex34	FAM	CY5
2	t(8;21)(q22;q22)	RUNX1-RUNX1T1	RUNX1 ex6-RUNX1T1 ex3	ROX	CY5
3	t(15;17)(q24;q21)	PML-RARA (bcr1, L)	PML ex6a-RARA ex3	FAM	CY5
2	t(9;11)(p21.3;q23.3)	KMT2A-MLLT3	KMT2A ex7-MLLT3 ex7	ROX	CY5
4	t(15;17)(q24;q21)	PML-RARA (bcr3, S)	PML ex3-RARA ex3	FAM	CY5
4	t(9;11)(p21.3;q23.3)	KMT2A-MLLT3	KMT2A ex8-MLLT3 ex11	ROX	CY5
-	t(11;19)(q23.3;p13.1)	KMT2A-ELL	KMT2A ex7-ELL ex3	FAM	CY5
5	t(16;21)(p11;q22)	FUS-ERG	FUS ex6-ERG ex12	ROX	CY5
6	t(12;22)(p13;q11-12)	ETV6-MN1	ETV6 ex2-MN1 ex2	FAM	CY5
0	t(6;9)(p23;q34)	DEK-NUP214	DEK ex9-NUP214 ex19	ROX	CY5
7	Reference gene	GUS	GUS ex11-GUS ex12	FAM	CY5
8	Reference gene	B2M	B2M ex2-B2M ex4	FAM	CY5
9	t(1;11)(p32;q23.3)	KMT2A-EPS15	KMT2A ex8+9-EP515 ex3	FAM	CY5
3	t(6;11)(q27;q23.3)	KMT2A-AFDN	KMT2A ex8+9-AFDN ex2	ROX	CY5
10	t(1;19)(q23;p13)	TCF3-PBX1	TCF3 ex16-PBX1 ex3	FAM	CY5
10	t(12;21)(p13;q22)	ETV6-RUNX1	ETV6 ex5-RUNX1 ex4b	ROX	CY5
	t(11;19)(q23.3;p13.3)	KMT2A-MLLT1	KMT2A ex8+9-MLLT1 ex2	FAM	CY5
11	t(4;11)(q21;q23.3)	KMT2A-AFF1	KMT2A ex8+9-AFF1 ex9	ROX	CY5
	t(17;19)(q22;p13)	TCF3-HLF	TCF3 ex14-HLF ex4	FAM	CY5
12	del(1)(p32)	STIL-TAL1	STIL ex1-TAL1 ex2	ROX	CY5
	t(9;22)(q34;q11)	BCR-ABL1 (m-bcr, P190)	BCR ex1-ABL1 ex3	FAM	CY5
13	t(9;9)(q34;q34)	SET-NUP214	SET ex9-NUP214 ex19	ROX	CY5
	t(11;19)(q23.3;p13.3)	KMT2A-MLLT1	KMT2A ex7-MLLT1 ex9	FAM	CY5
14	t(9;22)(q34;q11)	BCR-ABL1 (M-bcr, P210)	BCR ex12-ABL1 ex3	ROX	CY5
22	t(9;22)(q34;q11)	BCR-ABL1 (µ-bcr, P230)	BCR ex19-ABL1 ex3	FAM	CY5
15	t(11;17)(q23;q21)	ZBTB16-RARA	ZBTB16 ex3-RARA ex3	ROX	CY5
16	Reference gene	ABL1	ABL1 ex2-ABL1 ex3	FAM	CY5
17	t(9;12)(q34;p13)	ETV6-ABL1	ETV6 ex2+5-ABL1 ex3	FAM	CY5
1/	t(5;12)(q33;p13)	ETV6-PDGFRB	ETV6 ex2+5-PDGFRB ex12	ROX	CY5
18	t(10;11)(p12;q23.3)	KMT2A-MLLT10	KMT2A ex8+9-MLLT10 ex18	FAM	CY5
18	t(1;11)(q21;q23.3)	KMT2A-MLLT11	KMT2A ex8+9-MLLT11 ex2	ROX	CY5
	t(X;11)(q13;q23.3)	KMT2A-FOXO4	KMT2A ex7-FOXO4 ex2	FAM	CY5
19	t(11;17)(q23.3;q21)	KMT2A-MLLT6	KMT2A ex7-MLLT6 ex12	ROX	CY5
-	t(3;21)(q26;q22)	RUNX1-MECOM	RUNX1 ex6-MECOM ex2	FAM	CY5
20	t(10;11)(p12;q23.3)	KMT2A-MLLT10	KMT2A ex7-MLLT10 ex7	ROX	CY5
	t(5;17)(q35;q21)	NPM1-RARA	NPM1 ex4-RARA ex3	FAM	CY5
21	t(3;5)(q25.1;q35)	NPM1-MLF1	NPM1 ex4-MLF1 ex3	ROX	CY5
	t(10;11)(p12;q23.3)	KMT2A-MLLT10	KMT2A ex7-MLLT10 ex11	FAM	CY5
22 -	t(3;21)(q26;q22)	RUNX1-MECOM	RUNX1 ex6-MECOM ex6	ROX	CY5
23	t(10;11)(p12;q23.3)	KMT2A-MLLT10	KMT2A ex8-MLLT10 ex10	ROX	CY5
24			-		

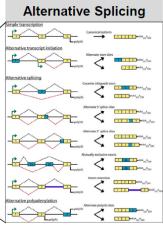
NGS: DNA Sequencing

- Large introns

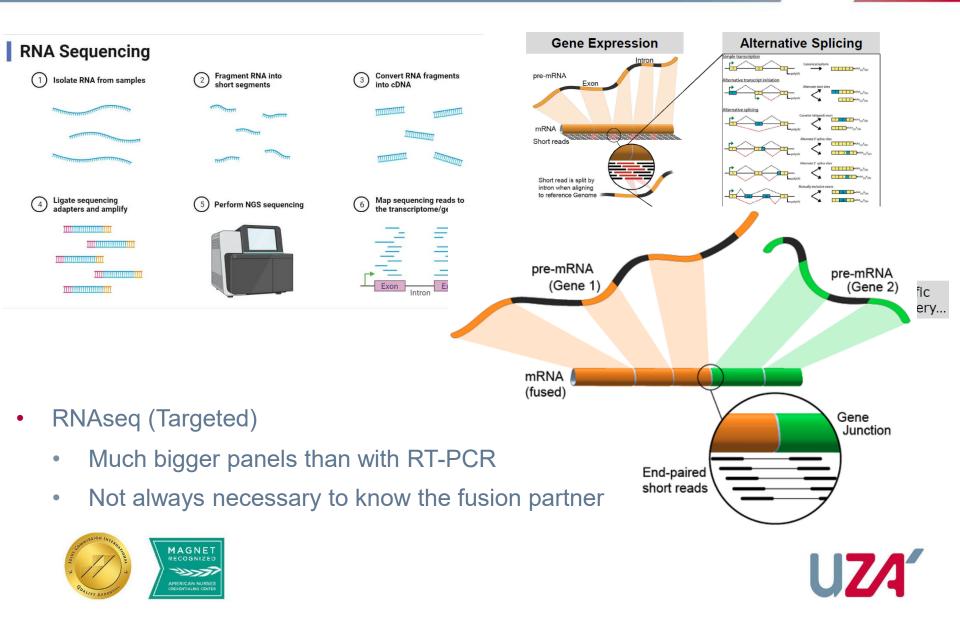
- Repetitive sequences


- No discrimination between expressed and unexpressed gene fusions


Meyerson et al., Nat Rev Genet 2010



NGS: RNA Sequencing -> cDNA sequencing

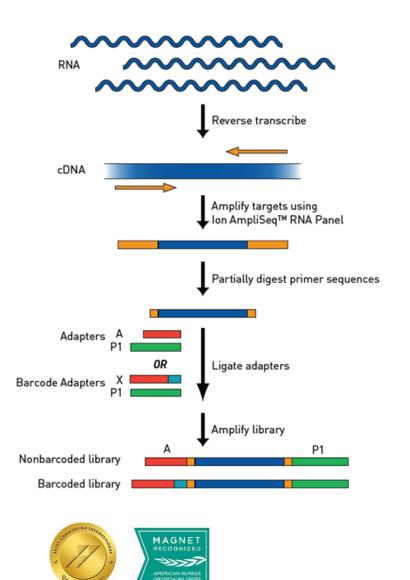


And RNA-editing, Allele specific expression, Transcript Discovery...

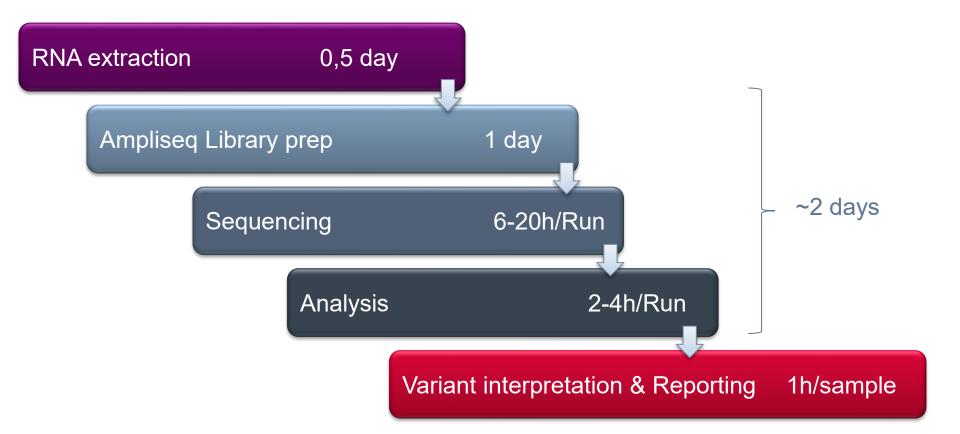
NGS: RNA Sequencing -> cDNA sequencing

RNAseq Targeted panels

A) Hybrid-capture	approach	B) Classical Amplico	on-based approach	C) Anchore	ed multiplex PCR	
Known partner	Target gene Capture probe	Known partner	Target gene	Adapter primer	Known partner	Target gene
Unknown partner	Capture probe	Unknown partner	Target gene	Adapter	Unknown partner	Target gene

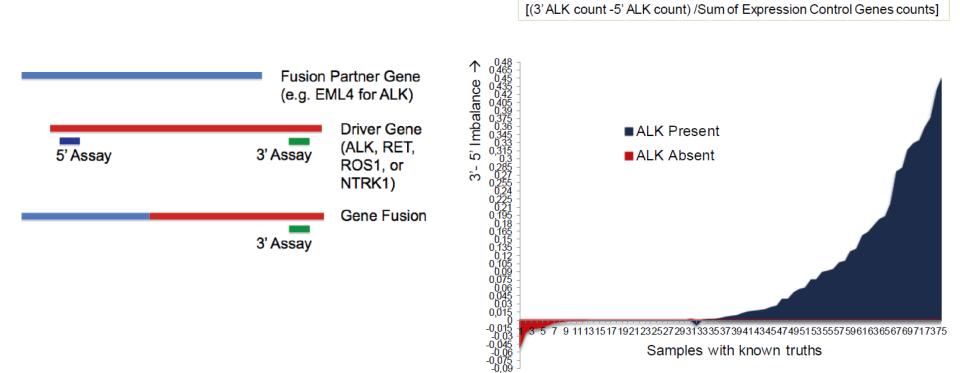

Bruno R et al., Diagnostics 2020

- Large choice of commercially available panels.
 - Amplicon-based approach = AmpliSeq (Thermofischer)...
 - Anchored multiplex PCR = Archer (IDT Technologies)...
 - Hybrid-Capture = Trusight (Illumina), SureSelect (Agilent)....


B) Classical Amplico	n-based approach
Known partner	Target gene primer
Unknown partner	Target gene
×	primer

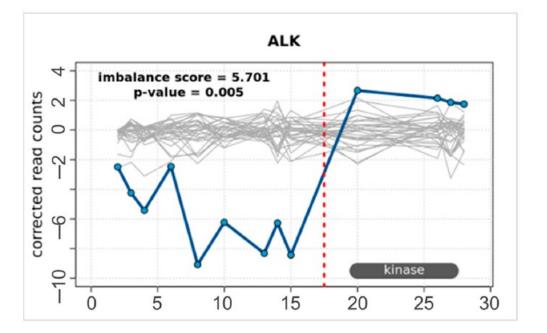
- Based on multiplex RT-PCR
- Primers flanking exons fusion combinations
- Detections of known fusion transcripts (both partners)
- Commercial & Custom panels

Amplicon-based approach: AmpliSeq[™]


- Sequencing on ThermoFischer or on Illumina platforms (AmpliSeq for Illumina)
- Several commercial (CE/IVD) panels
- Possible custom panels
- Include 5 positives expression controls
 - control of RNA quality and assay performance
- Expression imbalances between 3' and 5' regions
 - Detection of new fusion transcripts
- Low input (from 10 ng RNA)

UZA'

n	s										Search	Go Preferences •
	le.	Classification	Locus	Туре 🔻	Genes (Exons)	Read Counts	Detection	3'/5' Imbalance	I COSMIC/NCBI	Variant	ID	Read Counts Per Million
÷	- 11	Unclassified •	chr4:25665952 - chr6:117650609	FUSION	SLC34A2(4) - ROS1(32)	18944	Present		COSF1197	SLC34A2	2-ROS1.S4R32.COSF1197	136229.945563
+	la -	Unclassified •	chr10:61665879 - chr10:43612031	FUSION	CCDC6(1) - RET(12)	5165	Present		COSF1271	CCDC6-F	RET.C1R12.COSF1271	37142.507856
+	 N -	Unclassified •	chr2:42522656 - chr2:29446394	FUSION	EML4(13) - ALK(20)	2482	Present		COSF408.1	EML4-AL	LK.E13A20.COSF408.1	17848.539109
+	IN -	Unclassified •	chr4:25665952 - chr6:117645578	FUSION	SLC34A2(4) - ROS1(34)	1149	Present		COSF1198	SLC34A	2-ROS1.S4R34.COSF1198	8262.67987
+	[] •	Unclassified v	chr6:170871321	EXPR_CON	лті твр	23122	Present			TBP.ENC	CTRL.E3E4	166274.74669
+	P •	Unclassified v	chr12:53585786	EXPR_CON	ITI ITGB7	323	Present			ITGB7.EN	NCTRL.E14E15	2322.75509
+	0 -	Unclassified •	chr8:128751265	EXPR_CON	лті мүс	22329	Present			MYC.EN(CTRL.E2E3	160572.131254
+	P •	Unclassified •	chr11:118960975	EXPR_CON	ITI HMBS	1919	Present			HMBS.EN	NCTRL.E8E9	13799.897885
+	[] •	Unclassified •	chr1:156104319	EXPR_CON	ITI LMNA	33742	Present			LMNA.EN	NCTRL.E3E4	242645.208149
+		Unclassified •	chr10:43606730, chr10:43622086	ASSAYS_5	.5P RET	906,7168	NoCall	0.076896		RET.5p_I	NM_020975.4.e6e7,RET.3p_NM_020975	5.4. 6515.220158,51546.465889
+	10 -	Unclassified •	chr1:156834532, chr1:156851323	ASSAYS_5	5F NTRK1	10,78	NoCall	8.35E-4		NTRK1.5	ip.eNST00000392302.e2e3,NTRK1.3p.e1	.NS ⁻ 71.911922,560.912994
+	[] •	Unclassified •	chr2:29551347, chr2:29430138	ASSAYS_5	5F ALK	0,1949	Present	0.023933		ALK.5p_	NM_004304.4.e5e6,ALK.3p_NM_00430	4.4 0.0,14015.633652
+	1	Unclassified v	chr6:117711009, chr6:117632280	ASSAYS_5	_5F ROS1	924,18849	NoCall	0.220114		ROS1.5p	p_NM_002944.2.e11e12,ROS1.3p_NM_0	002 6644.661618,135546.782301


Expression Imbalance

ALK 3'-5' Imbalance defined as:

Gene	No Evidence of a Fusion	Uncertain	Strong Evidence of a Fusion
ALK	≤0.001	0.001-0.025	≥0.025
RET	≤0.03	0.03-0.045	≥0.045
ROS1	≤0.2	0.2-0.5	≥0.5

Expression Imbalance

Figure 4. Detection of a novel ALK fusion. Exon-tiling imbalance in ODxET was able to detect a novel *ALK* fusion in a NSCLC sample pre-characterized as *ALK*-positive in Valencia using the Oncomine Precision Assay.

Normanno et al., Int J Mol Sciences 2023.

Amplicon-based approach: AmpliSeq[™]

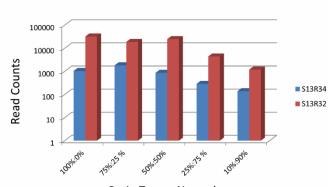
- AmpliSeq Lung Fusion Panel
 - Sensitivity/specificity >90%

ALK	RET	ROS1	NTRK1
EML4	KIF5B	CD74	CEL
KIF5B	CCDC6	SDC4	NFASC
KLC1	CUX1	SLC34A2	IRF2BP2
HIP1		EZR	TFG
TPR		TPM3	SQSTM1
		LRIG3	SSBP2
		GOPC	CD74
			DYNC2H
			MPRIP

50 FFPE NSCLC samples (10ng of RNA – minimum 2,5ng)

	Concordance with Ref Meth	sensitivity	Specificity
ALK	95%	93% (26/28)	100% (15/15)
ROS1	100%	100% (7/7)	100% (15/15)

Pfarr et al., Genes, Chromosomes & cancers 2016

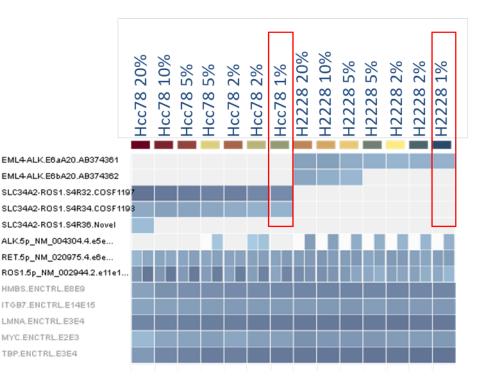

138 clinical samples (10ng of RNA)

(Concordance with FISH	sensitivity	Specificity
ALK	97%	93,3% (24+4/30)*	98,6% (69/70)
ROS1	95%	75% (3/4)	100% (18/18)
RET	93%	100% (1/1)	93% (13/14)*
* From 3'	/5' imbalance result	S	

Vaughn et al., BMC Cancer 2018

Amplicon-based approach: AmpliSeq[™]

 Serial dilution of a positive sample with 50% tumor cells in normal control tissue (50% - 5%)


Assay linearity SLC34A2:ROS1 positive case

Ratio	Tumor	:Normal
-------	-------	---------

		SLC34A	2:ROS1			
Ratio Tumor:Normal	Tumor Cell Content	S13R34 Reads	S13R32 Reads	Total Reads	3p5p	3p5p comp.
100%:0%	50%	1033	31965	357150	5.026	15.027
75%:25 %	37,5%	1800	18602	395231	0.243	1.845
50%:50%	25.0%	854	24592	380026	0.162	1.358
25%:75 %	12.5%	284	4365	250985	0.054	0.907
10%:90%	5.0%	137	1181	331860	0.007	0.493

Pfarr et al., Genes, Chromosomes & cancers 2016

- Dilution of positives cell lines
 - H2228 : ALK positive cell line
 - Hcc78 : ROS1 positive cell line


Amplicon-based approach: Oncomine on Genexus

- Fully Automated from library prep to analysis
- TAT 24h
- Several Oncomine panels (some with CE/IVD label)

Amplicon-based approach: Oncomine on Genexus

- Oncomine Precision Assay on Genexus
 - 188 NSCLC from five academic hospitals
 - Comparison of NGS with the standard procedures

Oncomine Precision Assay on Genexus

Table 2. Diagnostic Performance Summary						
Performance According to Biomarkers	Idylla	Idylla (No Imbalance)	Genexus	Genexus (No Imbalance)		
Accuracy (95% CI)	0.923 (0.88-0.96)	0.867 (0.81-0.91)	0.931 (0.89-0.96)	0.931 (0.89-0.96)		
Sensitivity (95% CI)	0.914 (0.86-0.97)	0.793 (0.72-0.87)	0.934 (0.89-0.98)	0.877 (0.82-0.94		
ALK	0.87	0.72	0.88	0.80		
ROS1	1.00	1.00	1.00	1.00		
MET	1.00	1.00	1.00	1.00		
RET	1.00	0.92	1.00	1.00		
NTRK	0.67	0.000	1.00	0.67		
Specificity (95% CI)	0.951 (0.91-1.0)	0.988 (0.96-1.0)	0.927 (0.87-0.98)	1.0 (1.0-1.0)		
ALK	0.99	1.00	0.95	1.00		
ROS1	0.99	0.99	1.00	1.00		
MET	1.00	1.00	1.00	1.00		
RET	0.99	0.99	1.00	1.00		
NTRK	0.99	1.00	1.00	1.00		

Hofman et al., JTO clinical and Research reports 2022

=> Imbalance analysis: improve sensitivity but decrease specificity !

Amplicon-based approach: Oncomine on Genexus

- Oncomine Dx Expert panel on Genexus (CE/IVD)
 - Full automatization Average TAT 18,3h

Table 1. Total run time for ODxET, including library preparation, templating, sequencing, and analysis for six samples and controls at each of the study centers.

Study Contor	Total Run Time				
Study Center	Run #1 (h:min)	Run #2 (h:min)			
Basel	18:06	18:03			
Naples	18:22	18:15			
Nice	18:00	17:56			
Porto	18:16	18:01			
Rome	18:38	18:34			
Valencia	19:01	18:34			

Normanno et al., Int J Mol Sciences 2023.

Amplicon-based approach: AmpliSeq[™] on Illumina

- AmpliSeq[™] for Illumina Childhood Cancer Panel
 - 100ng RNA
 - Sensitivity 94,4%
 - Specificity 100%
 - Limit of detection 10⁻² (RNA from SeraSeq Fusion RNA Mix diluted in IVS-0035 negative control (10⁻² – 10⁻⁵))

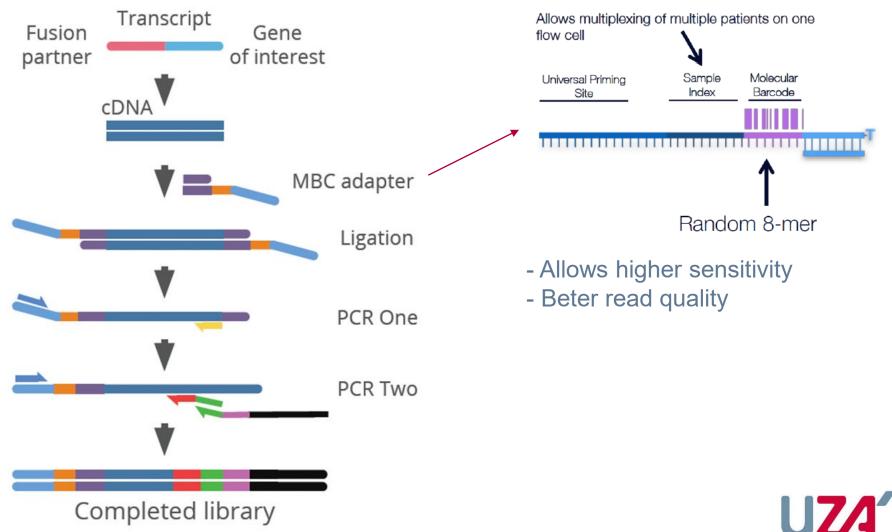
TABLE 2 | Obtained reads, mean SD, and %CV for undiluted RNA and 10⁻² dilution for each of the fusion genes analyzed. Libraries were performed by two operators (A and B).

Gene Id	Hgvs	Operator A		Operat	or B	Mean		SD)	% C	v
		Undiluted RNA reads	10 ⁻² dilution reads								
BCR::ABL1	BCR(NM_004327.3):r.1_3378 ABL (NM_005157.3):r.83_5384	40,916	2014	40,376	1168	40,646	1,591	381.8	598.2	1	38
ETV6::ABL1 (transcript 1)	ETV6(NM_001987.4):r.1_737 ABL1(NM_007313.2):r.576-5881	40,128	672	15,024	678	27,576	675	17,751.2	4.2	64	1
ETV6::ABL1 (transcript 2)	ETV6(NM_001987.4):r.1_1283 ABL1(NM_007313.2):r.576-5881	15,728	1052	20,890	676	18,309	864	3,650.1	265.9	20	31
FIP1L1:: >PDGFRA	FIP1L1(NM_030917.3):r.1_1109 PDGFRA(NM_006206.5):r.2037_6590	54,960	4104	44,730	1938	49,845	3021	7,233.7	1,531.6	15	51
MYST3:: >CREBBP	MYST3(NM_006766.4):r.1_3803 CREBBP(NM_004380.2):r.290_10197	20,532	1066	26,814	680	23,673	873	4,442.0	272.9	19	31
PCM1::JAK2	PCM1(NM_006197.3):r.1_4365 JAK2(NM_004972.3):r.2008_5285	17,866	974	26,152	736	22,009	855	5,859.1	168.3	27	20
PML::RARA	PML (NM_033238.2):r.1_1786_ ins134bp RARA (NM_000964.3): r.657_3,301	Not detected	Not detected	9,396	Not detected	9,396†	_	_	_	_	-
RUNX1:: >RUNX1T1	RUNX1 (NM_001754.4): r.1-803 RUNX1T1 (NM_004349.3):r.419-7420	11,028	856	12,968	462	11,998	659	1,371.8	278.6	11	42
TCF3::PBX1	TCF3(NM_003200.3):r.1_1519 PBX1(NM_002585.3):r.729_6918	21,434	1842	23,426	868	22,430	1,355	1,408.6	688.7	6	51

(Vincente-Garcés et al., Frontiers in Molecular Biosciences 2022)

Amplicon-based approach: AmpliSeq[™]

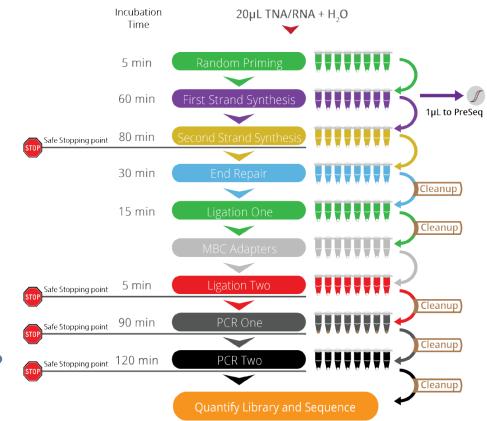
- Only for Known fusion
- Sensitivity/specificity

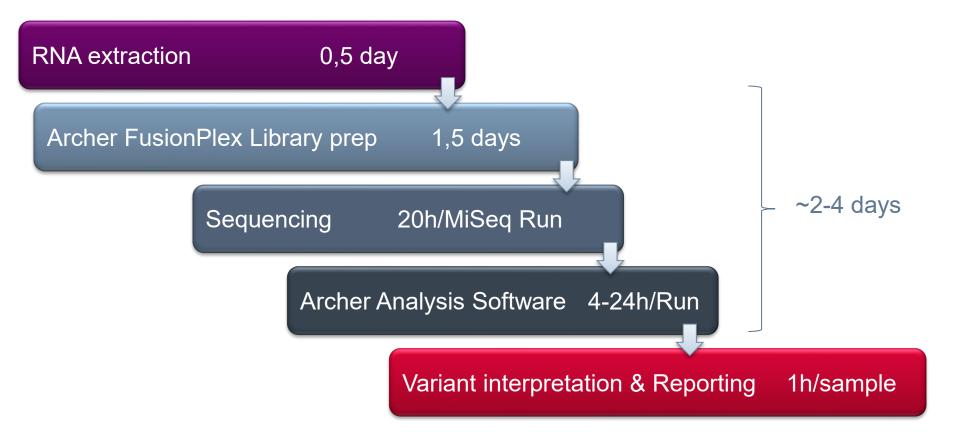

- Low RNA input
- Easy analysis
- ThermoFisher & Illumina
- 5'/3' imbalance can increase sensitivity
- low limit of detection
- TAT

Anchored multiplex PCR

C) Anchored multiplex PCR							
Adapter	Known partner	Target gene primer					
Adapter primer	Unknown partner	Target gene primer					

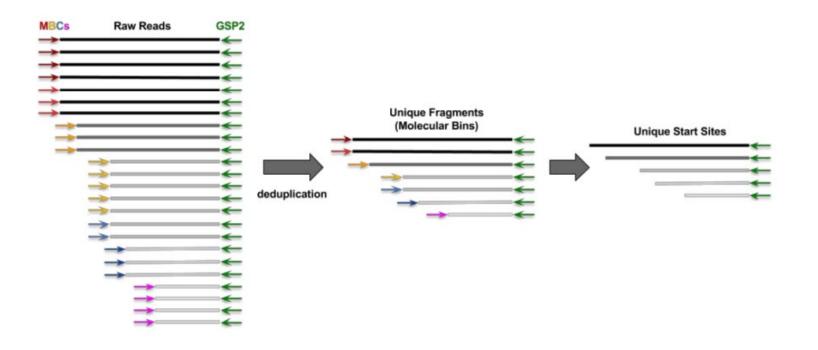
- Based on multiplex RT-PCR
- Primer in the target genes and an universal primer in adapter
- Detections of known and Unknown fusion transcripts
- Commercial & Custom panels




- Single-use, Lyophilized reagents
 - No master mixes
 - Minimizes user error and contamination
 - Stable at RT
 - Strips are color Coded
 - Include a QC for RNA quality
- Input
 - 50-200ng RNA

• Variants and gene expression Analysis?

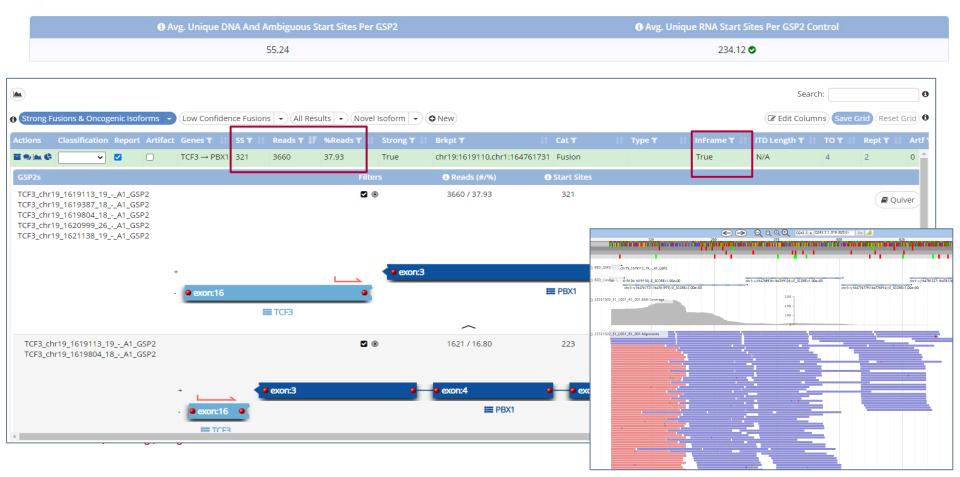
Molecular Barcode Statistics


Total Fragments	Fragments with Complete Adapter	O Number of Reads After Trimming Adapters
1,380,786	1,312,743	1,070,721
		Export Data (tsv)

QC Statistics

Ĵ	Avg. Unique DNA And Ambiguous Start Sites Per GSP2	Avg. Unique RNA Start Sites Per GSP2 Control				
	55.24	234.12 👁				
		Search:				
		Search:				

Strong F	usions & Oncoge	enic Isofo	orms 👻	Low Confiden	ce Fusions	s 👻 All Resu	ssults -) (Novel Isoform -) ONew)						Edit Columns Save Grid Reset		
Actions	Classification	Report	Artifact	Genes 🔻 🌵	ss 🔻 🕸	Reads 🛪 🎵	%Reads 🔻 🌡	Strong 🔻 🎼	Brkpt T 11	Cat 🕇 🧃	Туре 🛪 👘 🔱	InFrame 🔻 🎵	ITD Length 🔻 🎵	то ү 🕼	Rept 🔻 🎝
■ > ▲ ¢	~			TCF3 → PBX1	321	3660	37.93	True	chr19:1619110,chr1:164761731	Fusion		True	N/A	4	2
= 🤋 🖿 ¢	~			$TCF3 \rightarrow PBX1$	15	18	0.11	True	chr19:1619809,chr1:164761773	Fusion		False	N/A	3	0
= 🔊 🖿 🗘	~			IKZF1	8	12	0.27	True	chr7:50367353,chr7:50467616	Oncogenic Isoform	Exon(s) Skipped	True	N/A	66	7


- Criteria
 - minimum 5 unique reads covering the breakpoint
 - min 3 unique start sites covering the breakpoint
 - > 2% of the unique reads covering the breakpoint compared to the total number of unique reads that span either breakpoint
 - Fusion is In Frame

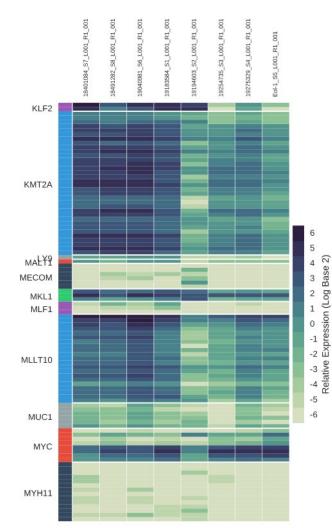
Molecular Barcode Statistics

🚯 Total Frag	ments	apter
1,380,78	36 1,312,743	1,070,721
		Export Data (tsv)

QC Statistics

Anchored multiplex PCR: Archer Fusion Plex panels

- Archer FusionPlex Heme v2 sequenced on a MiSeq
 - Starting with 200ng of RNA extracted from blood of bone marrow)
 - All sample passed QC
 - **Specificity: 100%** (8 "normal" sample)
 - Sensitivity: 100% (20 samples or cell lines with known fusions)


ABL1	ABL2	ALK	BCL11B	BCL2	BCL3	BCL6	BCR	BIRC3	
CBFB	CCND1	CCND2	CCND3	CD274	CDK6	CDKN2A	CEBPA	CEBPD	
CEBPE	CEBPG	CHD1	CHIC2	CIITA	CREBBP	CRLF2	CSF1R	CTLA4	
DEK	DUSP22	EBF1	EIF4A1	EPOR	ERG	ETV6	FGFR1	FOXP1	
GLIS2	ID4	IKZF1	IKZF2	IKZF3	IRF4	IRF8	JAK2	KAT6A	
KLF2	KMT2A	MALT1	MECOM	MKL1	MLF1	MLLT10	MLLT4	MUC1	
MYC	MYH11	NF1	NFKB2	NOTCH1	NTRK3	NUP214	NUP98	P2RY8	
PAG1	PAX5	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PICALM	PML	PRDM16	
PTK2B	RARA	RBM15	ROS1	RUNX1	RUNX1T1	SEMA6A	SETD2	STIL	1
TAL1	TCF3	TFG	TP63	TYK2	ZCCHC7				

- Archer FusionPlex Heme v2 sequenced on a MiSeq
 - Limit of detection: Dilution of 2 cell lines

on SS (pt) (>3) 2E12 148 2E12 37))	Reads (>5) 637 80	%Reads (>2%) 90,23 74,77
2E12 37		
)	80	74,77
)		
)		
4E2 798	18308	75,82
4E2 66	187	2,42
4E2 12	16	0,28
)		
E2 7	8	13,11
1	4E2 12	4E2 12 16) E2 7 8

RNA expression

(RNA Variant - RNA Variant with Outlier - All Results - O New

	Classification	Report	Symbol 🔻 🏨	HGVSp 🕇 🛛 👫	HGVSc ▼ ↓†	Depth 🕇 🥼	AO 🕇 🕴	AF 🗙 🎵	ç
≅ ♥ Q & C	~		ABL2	I≣ p.Leu460Phe	III c.1380G>T	177	177	1.0000	6
■ 🍳 Q 🔩 🗹	~		BCR	I p.Ser488LysfsTer2	I c.1461_1461+1insA	1220	544	0.4459	2
■ ♥ Q & C	~		I≣ CCND1	I∎ p.Lys72Arg	■ c.210_219delinsGCAGCGCTGT	21	19	0.9048	7
■ ♥ Q & C	~		I CCND1	I≣ p.Phe88Tyr	I c.263T>A	442	442	1.0000	1
e 🔍 🗘 🕼 🗹	~		I CCND1	i≣ p.Val67=	I≣ c.201C>A	21	16	0.7619	5
■ ♥ Q & C	~		IE CCND1	I∎ p.Lys72Arg	I c.214_216delinsCGC	20	19	0.9500	6
■ २ Q & C	~		CCND3	I≣ p.Pro134Ser	I≣ c.400C>T	9659	4782	0.4951	1
■ ♥ Q & C	~		I FOXP1		i≣ c71dup	1147	150	0.1308	5
■ > Q & C	~		IKZF2	🔳 p.Lys111Glu	≣ c.331A>G	183	129	0.7049	4
= • 0 ¢ C	~		IKZF3	I≣ p.Cys123Tyr	≣ c.368G>A	251	23	0.0916	8
■ ₽ Q \$ C	~		KAT6A	■ p.Val813CysfsTer8	I c.2437-1_2437insT	15	7	0.4667	2

Not Validated

- Archer Custom FusionPlex Panel sequenced on Miseq
 - Accuracy 97,6% (80/82) by comparing with other methods on 82 FFPE case -> 3 extra discordant cases if RNA input <100ng
 - LOD measures via dilution of Ref material (10%)

Specimen	Fusion detected	Calculated transcript copies	Unique start sites ≥3	Unique reads ≥5	Percentage of reads supporting fusion ≥10	Average unique RNA start sites per GSP2 control ≥10
HD796	TPM3(6)-NTRK1(9)	2940	109	290	85	85
	ETV6(5)-NTRK3(14)	2400	77	189	86	85.9
	SLC34A2(4)-ROS1(32)	840	79	186	94	93.5
	EML4(12)-ALK(20)	780	29	60	92	92.3
HD783	No Fusion Detected	0	na	na	na	249
20% Dilution	TPM3(6)-NTRK1(9)	588	52	88	56	283
	ETV6(5)-NTRK3(14)	480	43	61	79	283
	SLC34A2(4)-ROS1(32)	168	36	53	23	283
	EML4(12)-ALK(20)	156	16	24	80	283
10% Dilution	TPM3(6)-NTRK1(9)	294	25	28	32	249
	ETV6(5)-NTRK3(14)	240	24	31	91	249
	SLC34A2(4)-ROS1(32)	84	21	24	96	249
	EML4(12)-ALK(20)	78	5	5	71	249
5% Dilution	TPM3(6)-NTRK1(9)	147	15	19	26	241
	ETV6(5)-NTRK3(14)	120	11	11	65	241
	SLC34A2(4)-ROS1(32)	42	14	17	100	241
	EML4(12)-ALK(20)	39	not detectable	not detectable	not detectable	241
2.5% Dilution	TPM3(6)-NTRK1(9)	74	6	7	13	241
	ETV6(5)-NTRK3(14)	60	5	6	75	241
	SLC34A2(4)-ROS1(32)	21	5	5	100	241
	EML4(12)-ALK(20)	19	not detectable	not detectable	not detectable	

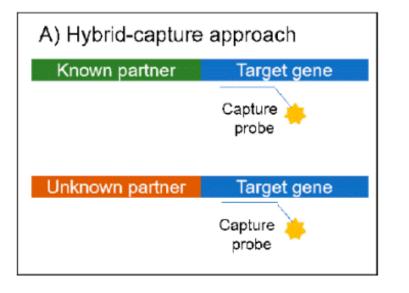
- Custom Archer FusionPlex Panel sequenced on NextSeq
 - Specificity and sensitivity of 100% on 72 FFPE cases (starting with 125ng of RNA)
 - LOD (>12,5% tumor cells)

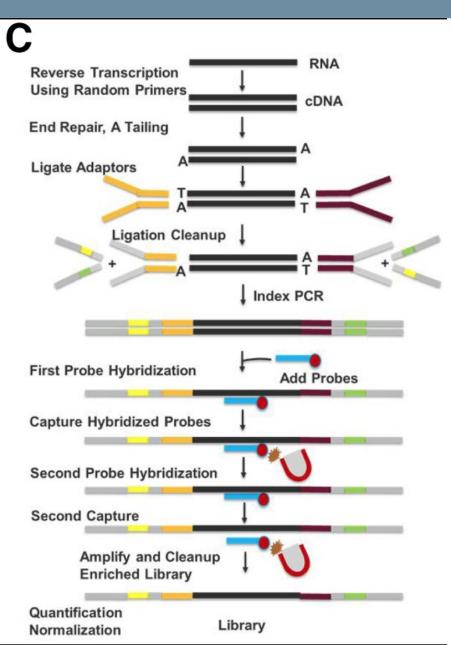
Table 2

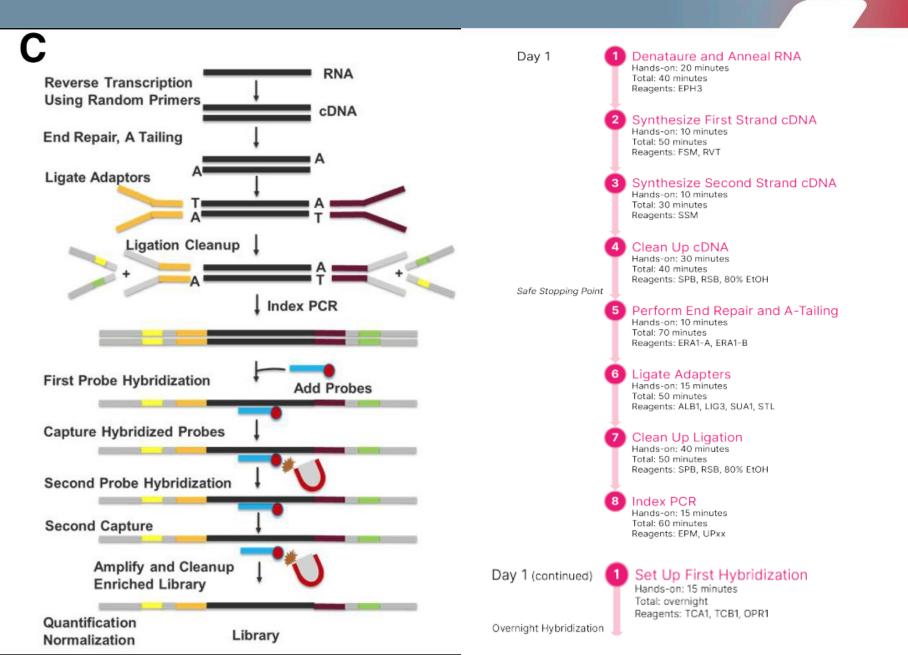
Summary of the experiments for lower limit of tumor % detection.

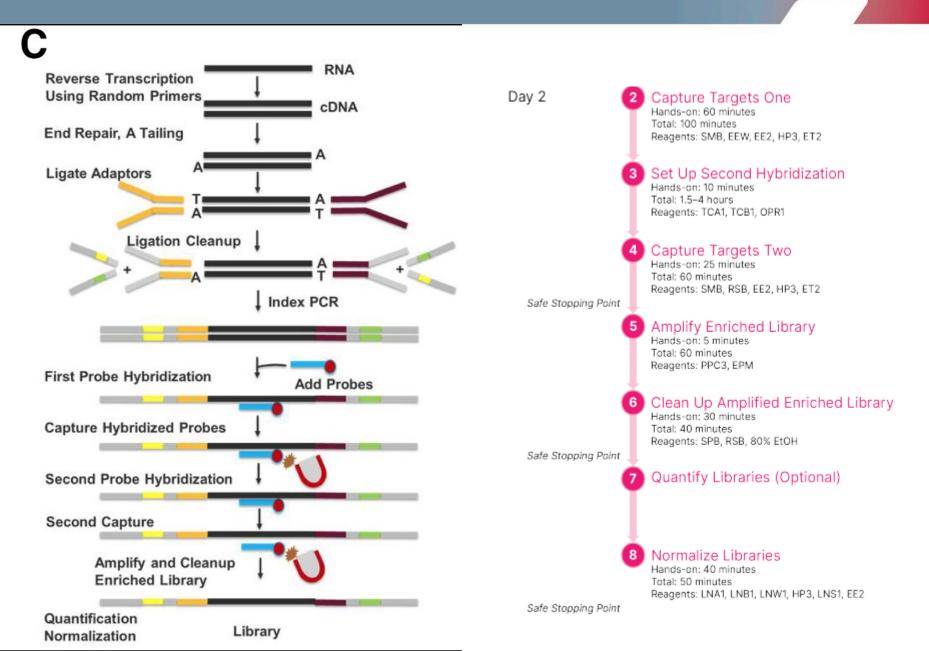
Sample/Tumor %	# of Detected Fusions	RNA input	# Missed fusions		
SERACARE100%	16	125 ng	0		
SERACARE 50% IVS35 50%	16	125 ng	0		
SERACARE 50% IVS35 50%	16	125 ng	0		
SERACARE 25% IVS35 75%	16	125 ng	0		
SERACARE 25% IVS35 75%	16	125 ng	0		
SERACARE 12.5% IVS35	16	125 ng	0		
87.5%					
SERACARE 12.5% IVS35	15	125 ng	1		
87.5%					
SERACARE 5% IVS35 95%	12	125 ng	4		
SERACARE 5% IVS35 95%	11	125 ng	5		
SERACARE 2.5% IVS35	8	125 ng	8		
97.5%		-			
SERACARE 2.5% IVS35	8	125 ng	8		
97.5%		_			

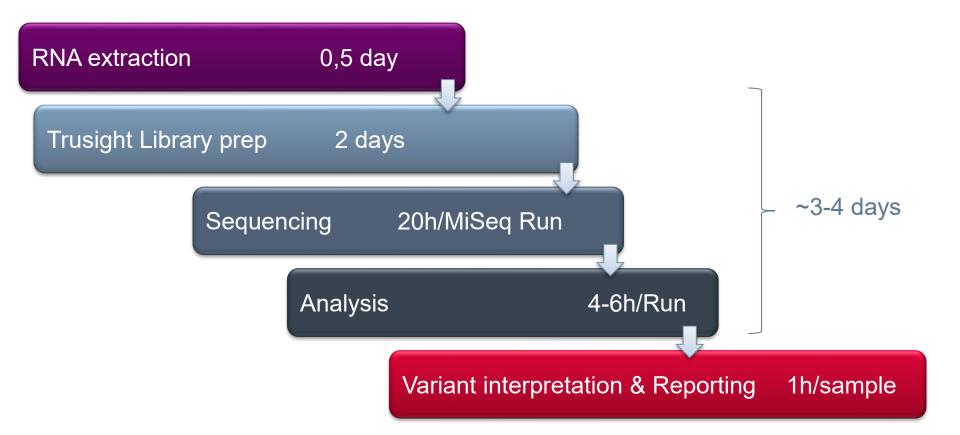
Hindi et al., Exp Mol Pathol 2020




- Higher RNA input
- Cost
- TAT


- User friendly library prep
- Easy analysis
- Detection of Unknown fusion transcript
- Compatible with Illumina and Thermofisher
- Very good Accuracy




- Gene-specific enrichment by hybridization with specific DNA or RNA probes
- Starting from DNA or RNA
- Detections of known and Unknown fusion transcripts
- Commercial & Custom panels

- Sequencing on Illumina platforms
- Several commercial panels, some CE/IVD
- input (from 40 ng RNA)

UZA'

Illumina TSO 500

Confirmed structural	supp
variant	reads
EGFR vIII	2144
MET ex14	6885
CCDC6::RET	4550
CD74::ROS1	250
EML4::ALK var1	162
EML4::ALK var3a	24
ETV6::NTRK3	1170
EWSR1::ERG	3376
EWSR1::FLI1	1963
EWSR1::NFATC2	7287
FGFR3::BAIAP2L1	1474
FGFR3::TACC3	140
HIP1::ALK	460
KIF5B::RET	795
LMNA::NTRK1	2082
NCOA4::RET	1992
NPM1::ALK	40
PAX3::FOXO1	5593
PAX8::PPARG	1419
SDC4::ROS1	2162
SLC34A2::ROS1	272
SLC45A3::BRAF	1559
TMPRSS2::ERG	1804
TPM3::NTRK1	565

• Illumina Trusight Tumor 170 (TST170)

A: 44 samples + 2 Commercial controls B: 173 patient samples + 5 controls Input: 40-85ng RNA

Variant type	Read depth; filter	TP	TN	FP	FN	PPA (%)	NPA (%)	PPV (%)	NPV (%)
Laboratory A, control s	pecimens								
Substitutions	≥100×; VAF ≥2.6%	10652	7349439	303	73	99.3	99.9	97.2	99.9
Indels	≥250×; VAF ≥5%	594	7359678	180	75	88.8	99.9	76.7	99.9
Fusions/splice variants	"high confidence"	301		15	67	81.8		95.2	
Laboratory A, clinical s	pecimens								
Substitutions	≥100×; VAF ≥2.6%	41^			0	100			
Indels	≥250×; VAF ≥5%	5†			0	100			
Copy number variants		14			2	87.5	_		
Fusions/splice variants		17 [‡]			15	94.4			
Laboratory B, combine	d data for control and clinic	cal specimer	ıs				-		
Substitutions	≥250×; VAF ≥5%					99.87	100	100	98.33
Indels	≥250×; VAF ≥5%					97.56	100	100	97.43
Copy number variants	Filter pass, > 7 copies					96.87	100	100	97.67
Fusions/splice variants	"high confidence"					97.87	100	100	98.36

Boyle et al., Frontiers in Genetics 2021

79 samples + 1 Commercial control (SeraCare): 35 known fusions and 5 splicing events: all confirmed (100%) Input: 40ng (QC ok from 1-38ng)

Froyen et al., Cancers 2022

• Illumina TSO 500

				Contribution t	o the mixture
Sample	TC	fusion	100%	75%	25%
F1	70%	KIF5B::RET	2878	1398	322
F2	35%	EML4::ALK	427	520	82
F3	90%	SLC45A2::ERG	126	67	16
F4	50%	none	0	0	0

	fusion	undiluted	5x diluted	15x diluted
_	EGFR vIII	61	22	12
L	MET ex14 splice	32	nd	nd
	SLC45A3-BRAF	54	14	nd
	FGFR3-TACC3	174	39	16
	FGFR3-BAIAP2L1	79	27	8
	KIF5B-RET	94	19	8
	NCOA4-RET	118	19	7
	TMPRSS2-ERG	65	18	13
_	EML4-ALK	70	8	5
Γ	CD74-ROS1	8	nd	nd
	ETV6-NTRK3	67	6	8
	LMNA-NTRK1	71	20	8
	TPM3-NRTK1	93	8	nd
	PAX8-PPARG	56	10	7
	SLC34A2-ROS1	18	nd	nd
	EGFR-SEPT14	64	13	nd

nd: not detected

Froyen et al., Cancers 2022

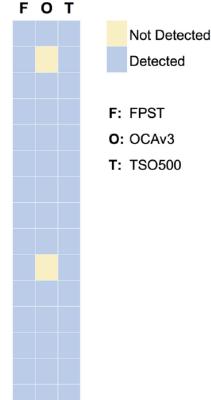
- Hands on time
- TAT
- Only on Illumina

- Detection of Unknown fusion transcript
- Commercial and Custom panels
- Very good Accuracy
- Relatively low RNA input

Comparison of the different methods in the literature

- Comparison Oncomine Focus Assay, Oncomine Precision Assay, Trusight
 Oncology 500 & Archer FusionPlex Lung panel for NTRK gene fusions detection
 - RNA input: 200ng (Archer), 40ng (TSO500), 10ng (OFA, OPA)

Cell lines and commercial reference material


Table 4Results of the Pilot Study Evaluating the Ability of the AFL, TS0500, OPA, and OFA Assays to Detect NTRK Fusions in Cell LineSamples and Reference Materials

Sample ID	Sample type	Expected fusion	AFL	TS0500	OPA	OFA
KM-12	Cell line	TPM3:NTRK1	Detected	Detected	Detected	Detected
BaF3-AFAP1-NTRK2	Cell line	AFAP1:NTRK2	Detected	Detected	Detected	Detected
IMS-M2	Cell line	ETV6:NTRK3	Detected	Detected	Detected	Detected
ML-2	Cell line	None	No NTRK f	usion detected		
SeraSeq NTRK	Reference material	IRF2BP2:NTRK1	Detected	Detected	Detected	Detected
		LMNA:NTRK1	Detected	Detected	Detected	Not detected (missing from panel)
		SQSTM1:NTRK1	Detected	Detected	Detected	Detected
		TFG:NTRK1	Detected	Detected	Detected	Not detected (missing from panel)
		TPM3:NTRK1	Detected	Detected	Detected	Detected
		AFAP1:NTRK2	Detected	Detected	Detected	Detected
		NACC2:NTRK2	Detected	Detected	Detected	Detected
		PAN3:NTRK2	Detected	Detected	Detected	Not detected (missing from panel)
		QKI:NTRK2	Detected	Detected	Detected	Detected
		TRIM24:NTRK2	Detected	Detected	Detected	Detected
		BTBD1:NTRK3	Detected	Detected	Detected	Detected
		ETV6:NTRK3 (E4N14)	Detected	Detected	Detected	Detected
		ETV6:NTRK3 (E4N15)	Detected	Detected	Detected	Detected
		ETV6:NTRK3 (E5N14)	Detected	Not reported	Detected	Detected
		ETV6:NTRK3 (E5N15)	Detected	Not reported	Detected	Detected
SeraSeq WT	Reference material	None	No NTRK f	usion detected		

Bormann Chung et al., J Mol Diag 2022

- Comparison Oncomine Comprehensive Assay v3, Trusight Oncology 500
 & Archer FusionPlex Solid Tumor for NTRK gene fusions detection
 - RNA input: 20ng (FPST and OCAv3), 40ng (TSO500)
 - 39 FFPE + 10 FNA samples + SeraSeq FFPE NTRK fusion reference material

Fusion Partner Exons *TPM3-NTRK1* T7N10 LMNA-NTRK1 L11N11 IRF2BP2-NTRK1 I1N10 SQSTM1-NTRK1 S5N10 TFG-NTRK1 T5N10 AFAP1-NTRK2 A14N12 NACC2-NTRK2 N4N13 QKI-NTRK2 Q6N16 **TRIM24-NTRK2** T12N15 PAN3-NTRK2 P1N17 ETV6-NTRK3 E5N14 ETV6-NTRK3 E5N15 ETV6-NTRK3 E4N15 ETV6-NTRK3 E4N14 BTBD1-NTRK3 B4N14

Park et al., J Mol Diag 2021

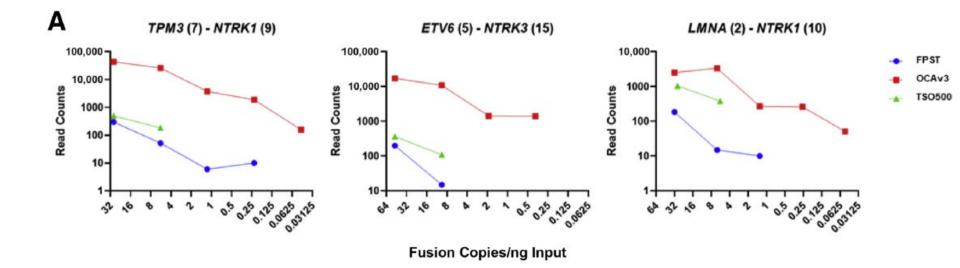
Comparison Oncomine Comprehensive Assay v3, Trusight Oncology 500
 & Archer FusionPlex Solid Tumor for NTRK gene fusions detection

PID		MAPK Driver					In raw data but filtered
	NTRK Fusions	Alterations	Other Fusions	F	0	т	/out because not targeted
1	TPM3-NTRK1 (T7N10)		ND				>
2	KANK1-NTRK3 (K2N14)	KIT, PDGFRA Amplification	ND				
3	EML4-NTRK3 (E2N14)		ND				NTRK Fusion Detected
4	RBPMS-NTRK3 (R5M14)		ND				Nontargeted Fusion Detected
5	TFG-NTRK1 (T4N10)		ND				Not Tested
6	ETV6-NTRK3 (E4N14)		ND				Other Fusion Detected
7	ETV6-NTRK3 (E4N14)	ND	ND				No Fusion Detected
8	ETV6-NTRK3 (E4N14)		ND				
9	TPR-NTRK1 (T21N10)		ND				F FPST
10	TPR-NTRK1 (T21N10)		ND				O OCAv3
11	ETV6-NTRK3 (E4N14)		ND				T TSO500
12	ETV6-NTRK3 (E4N14)		ND				
13	EML4-NTRK3 (E2N14)		ND				
14	EML4-NTRK3 (E2N14)		ND				
15	ETV6-NTRK3 (E4N14)	ND	ND				
16	ETV6-NTRK2 (E4N16)	IDH1 R132H	ND				
17	ETV6-NTRK3 (E4N14)	ND	ND				

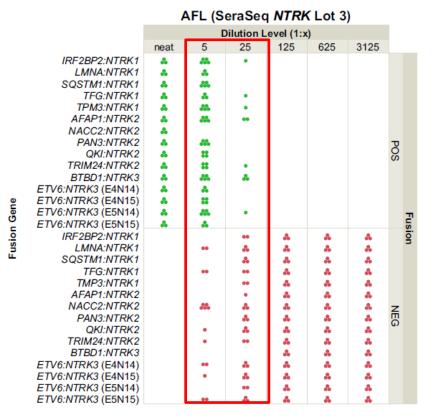
Comparison Oncomine Comprehensive Assay v3, Trusight Oncology 500

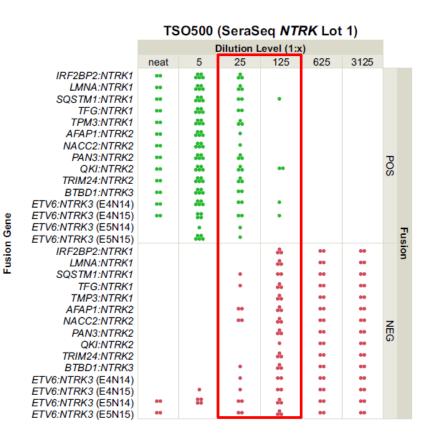
& Archer FusionPlex Solid Tumor for NTRK gene fusions detection

PID	NTRK Fusions	MAPK Driver Alterations	Other Fusions	F	0	т	
18	ND	ND	AFAP1L2-RET (A6R12)				·
19	ND	ND	EML4-ALK (E2A20)				
20	ND		ND				
21	ND		ND				
22	ND		CCDC6-RET (C1R12)				
23	ND		NCOA4-RET (N7R12)				
24	ND	ND	ND				
25	ND	ND	CTTNBP2-BRAF (C3B11)				◀
26	ND	ND	KIAA1549-BRAF (K14B9)				
27	ND		EML4-ALK (E2A20)				
28	ND		NCOA4-RET (N9R12)				
29	ND	ND	EML4-ALK (E13A20)				
30	ND	ND	EML4-ALK (E14A20)				
31	ND	ND	EML4-ALK (E13A20)				
32	ND	ND	PAX8-PPARG (P9P2)				
33	ND	ND	FGFR3-TACC3 (F17T6)				
34	ND		FGFR1-TACC1 (F17T6)				
35	ND	EGFR Amplification	ND				
36	ND	BRAF V600E	ND				
37	ND	BRAF G466V	ND				
38	ND	BRAF V600E	ND				
39	ND	BRAF G464V	ND				
40	ND	ND	CD74-ROS1 (C6R34)				
41	ND	ND	SLC34A2-ROS1 (S13R34)				
42	ND	ND	TMPRSS2-ERG (T2E4)				
43	ND	ND	ND				
44	ND	ND	KIAA1549-BRAF (K15B9)				
45	ND		PAX8-PPARG (P8P2)				
46	ND		PAX8-PPARG (P8P2)				
47	ND	ND	KIAA1549-BRAF (K16B9)				← L
48	ND	ND	CCDC6-RET (C1R12)				
49	ND		CCDC6-RET (C1R12)				

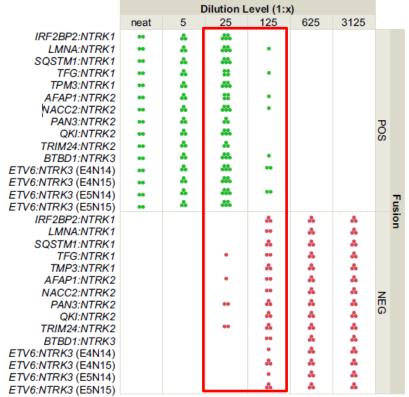

Park et al., J Mol Diag 2021

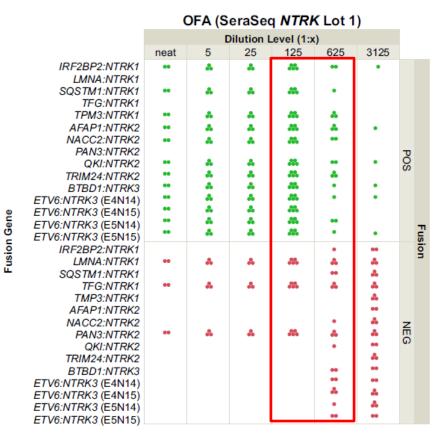
- Comparison Trusight RNA fusion Panel & Archer Pan-Heme Kit
 - 100 ng RNA
 - 24 patients' samples with known fusion => <u>all detected with both methods</u>
 - Limit of detection: Dilution of samples with BCR::ABL1 e1a2 transcript


	TruSight RNA fu	sion		FusionPlex Pan-Heme					
Variable	Results	Total no. of reads	No. of fusion supporting reads	Results	Total no. of reads	No. (%) of fusion supporting reads			
BCR-ABL1 e1a2 c	ontrol material								
10 ⁻¹	Not detected	4,282,660	—	Detected	2,471,217	131 (16.4)			
10 ⁻²	Not detected	4,356,800	_	Detected	2,409,933	11 (15)			
10 ⁻³	Not detected	4,313,057	_	Not detected	2,471,016	_			
10^{-4}	Not detected	4,555,943	_	Not detected	2,498,515	_			
Diluted patient s	amples								
1:1 dilution	Detected	11,085,226	10 (score 0.738)	Detected	2,712,284	53 (9.2)			
1:4 dilution	Not detected	10,634,659	_	Detected	2,703,858	024 (4.4)			


Table 4 Detection Limits of Two Next-Generation Sequencing Assays

- Comparison Oncomine Comprehensive Assay v3, Trusight Oncology 500
 & Archer FusionPlex Solid Tumor for NTRK gene fusions detection
 - RNA input: 20ng (FPST and OCAv3), 40ng (TSO500)
 - Limit of detection: Dilution of SeraSeq Fusion Mix v3 in Wild-type RNA


- Comparison Oncomine Focus Assay, Oncomine Precision Assay, Trusight Oncology 500 & Archer FusionPlex Lung panel for NTRK gene fusions detection
 - RNA input: 200ng (Archer), 40ng (TSO500), 10ng (OFA, OPA)
 - Limit of detection: Dilution of SeraSeq Fusion Mix v3



Bormann Chung et al., J Mol Diag 2022

- Comparison Oncomine Focus Assay, Oncomine Precision Assay, Trusight Oncology 500 & Archer FusionPlex Lung panel for NTRK gene fusions detection
 - RNA input: 200ng (Archer), 40ng (TSO500), 10ng (OFA, OPA)
 - Limit of detection: Dilution of SeraSeq Fusion Mix v3

OPA Fusion Caller (SeraSeq NTRK Lot 3)

Bormann Chung et al., J Mol Diag 2022

Fusion Gene

Comparison Trusight RNA fusion Panel & Archer Pan-Heme Kit

Variable	TruSight RNA fusion	FusionPlex Pan-Heme
Read length, bp	2 × 75	2 × 150
Turnaround time, days	5	3
Hands-on time, hours	7	2.5
Data analysis	Either by Local Run Manager or on web-based analysis	On the Archer Analysis web
No. of target genes	507	199
Pan-cancer application	Yes	No
Sensitivity	Slightly low but sufficient for diagnostic samples	Sufficient for diagnostic samples
For disease monitoring	Not recommended	Not recommended

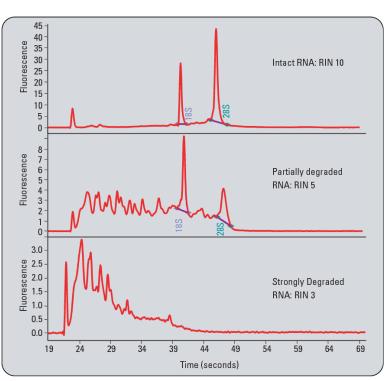
Table 5 Comparison of Characteristics of Two Next-Generation Sequencing Assays

Comparison Oncomine Focus Assay, Oncomine Precision Assay, Trusight
 Oncology 500 & Archer FusionPlex Lung panel for NTRK gene fusions detection

Variable	AFL	TS0500	OPA	OFA
Technology	Anchored multiplex PCR	Hybrid capture	Amplicon-based enrichment	Amplicon-based enrichment
RNA sample input, ng	20—250 (200 used for this study)	40	10	10
Turnaround time, days	~5	~ 5	~1	~5
	Manual library preparation	Manual library preparation Automated option available	Fully automated with minimal hands-on time	Manual library preparatio Automated option available
Samples per run, <i>n</i>	48 (MiSeq)	8 DNA + 8 RNA (NextSeq High Output)	4—16	24 DNA + 24 RNA (530 chip)
Sequencing system compatibility	Illumina and Ion Torrent	Illumina only	Ion Torrent only	Ion Torrent only
Pilot study				
Cell lines	All NTRK fusions detected	All NTRK fusions detected	All NTRK fusions detected	All NTRK fusions detected
Reference materials	All NTRK fusions detected	16/18 NTRK fusions reported: 2 ETV6:NTRK3 variants not reported, although they were present in sequencing data	All NTRK fusions detected	15/18 NTRK fusions detected: 3 missing were not included in panel
NTRK fusion-negative samples	No false-positive result	No false-positive result	No false-positive result	No false-positive result
Sensitivity				
Total fusion copies at estimated LoD	Cell lines: 30—620 Reference materials: 710 —5200	All samples: ~30–290	Fusion Caller, all samples: ~1-28 Imbalance Caller, all samples: 12-28	All samples: ∼1—28
Reproducibility at estimated LoD	Good: 3/5 to 5/5	Very good: 4/5 to 5/5	Very good: 4/5 to 5/5	Very good: 4/5 to 5/5

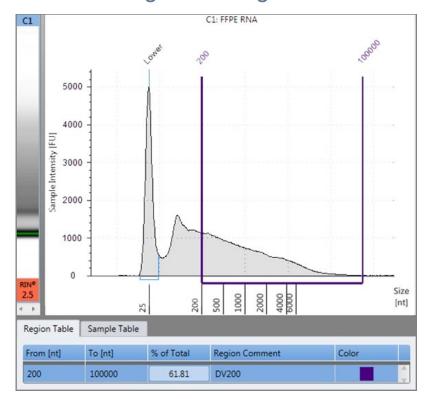
Bormann Chung et al., J Mol Diag 2022

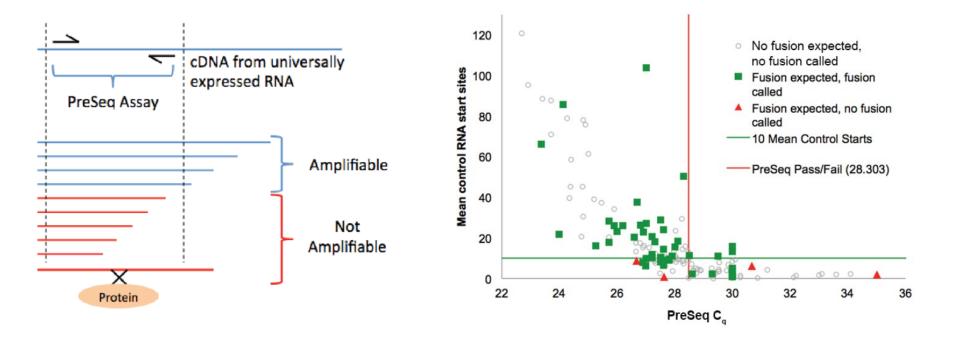
	RNA input	Sensitivity/ specificity	Limit of detection	TAT (days)	Hands on Time
Ampliseq/ Oncomine	Low	++	+++	1-3	_/+
Archer	Middle to high	+++	++	3-5	++
Trusight	Low to Middle	+++	++	4-6	+++



RNA extraction

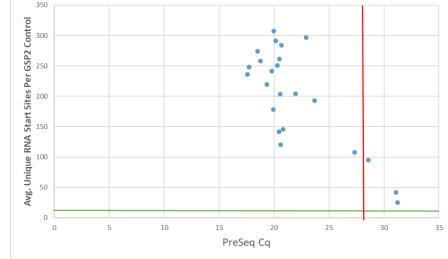
- Many kit for RNA extraction
- Depend on starting material (Tissue, FFPE, Blood, Bone marrow, cells, fresh/frozen)
- QC for RNA quality
 - Yield (concentration measurement via **fluorescent dye-based assay** (Qubit) of spectrophotometry (Nanodrop)
 - RNA integrity
 - Tape station / Bioanalyzer (RIN (RNA integrity numbers) of DV200 value (percentage of RNA fragments larger than 200 nt)
 - qPCR (included in some library prep kit such as Archer)
- RNA quality is more of an issue for FFPE samples


- QC for RNA quality
 - RNA integrity
 - Tape station / Bioanalyzer (RIN (RNA integrity numbers) of DV200 value


RIN

28S/18S RNA ratio

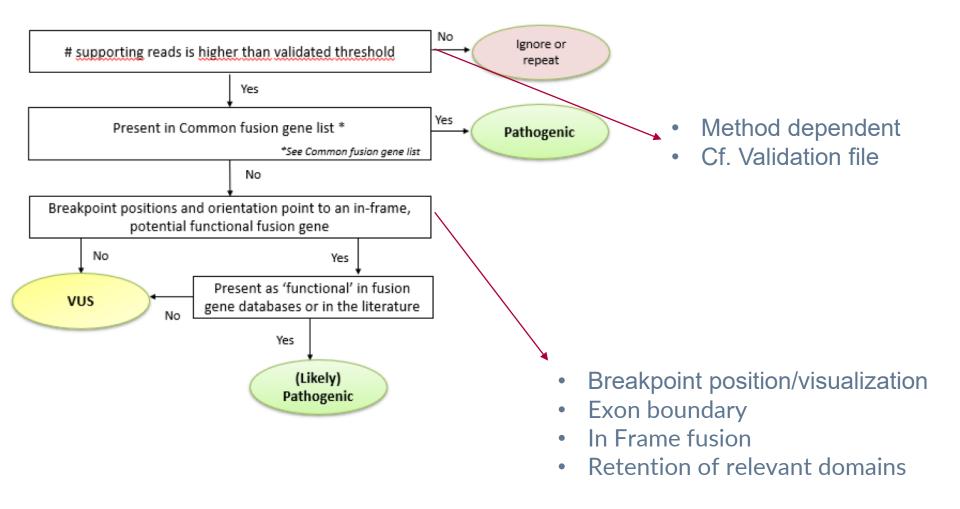

DV200 % of RNA fragments larger than 200 nt


- QC for RNA quality
 - RNA integrity
 - qPCR (included in some library prep kit such as Archer = PreSeq QC)
 - Concentration
 - Length: fragments greater than 100bp in lengths
 - Crosslinking

- RNA quality is more of an issue for FFPE samples
 - 33 retrospective samples
 - RNA extracted from Blood or Bone marrow samples (fresh)

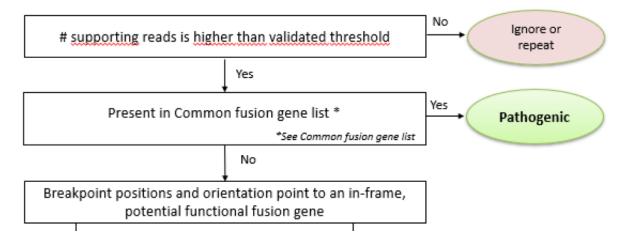
>90% samples above cut-off

Tertiary analysis

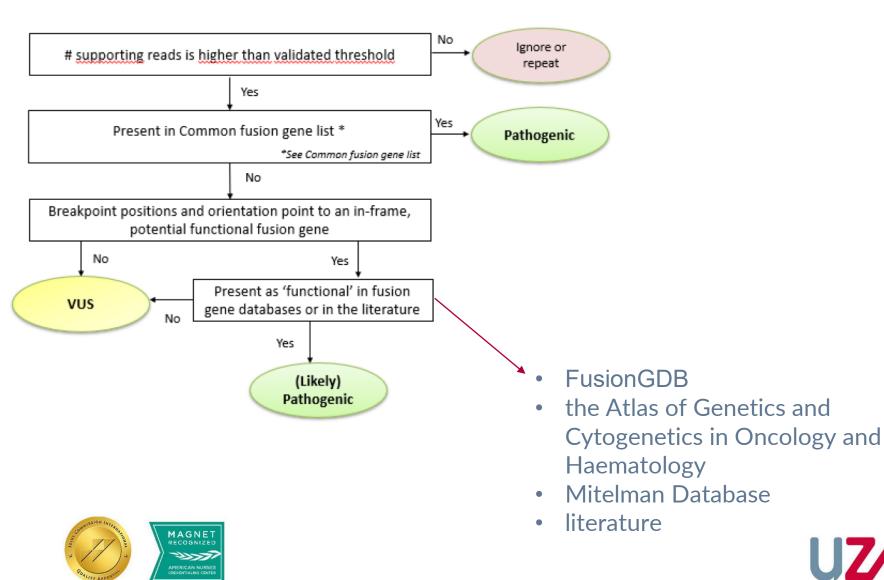


Tertiary analysis

- BELAC NGS Guidelines:
 - Tertiary analysis is composed of two different step:
 - Annotation and biological classification
 - annotates each variant in relation to its position in the gene => software
 - classification into 5 biological classes
 - Clinical classification
 - classification into 4 clinical classes
 - Annotation with their clinical utility (diagnostic, prognostic or therapeutic)



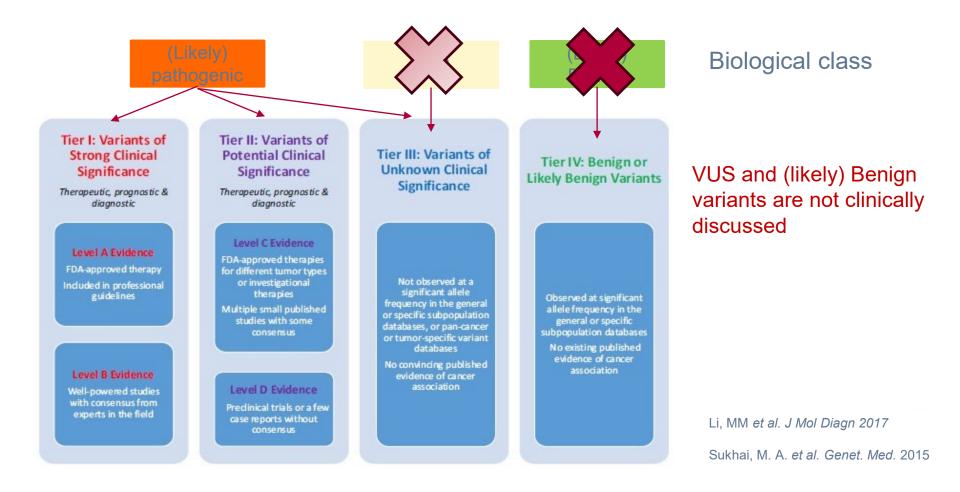
UZA



Annex 3 Common fusion gene list (v1)

Fusion gene	Gene A	Gene B	Transcript ID A	Transcript ID B	Exon A	Exon B	Breakpoint A	Breakpoint B	remark	Found in
ADCY9-PRKCB	ADCY9	PRKCB								Lung
AFAP1-NTRK2	AFAP1	NTRK2		NM_006180.3						Glioma
AGBL4-NTRK2	AGBL4	NTRK2		NM_006180.3						Glioma
AGGF1-RAF1	AGGF1	RAF1		NM_002880.3						Prostate
AGGF1-RAF1	AGGF1	RAF1		NM_002880.3						Prostate
AGK-BRAF	AGK	BRAF		NM_004333.4						Skin; thyroid
AKAP13-RET	AKAP13	RET		NM_020975.4						Thyroid
ANK1-FGFR1	ANK1	FGFR1		NM_023110.2						Breast
ANXA4-PKN1	ANXA4	PKN1								Liver
AP3B1-BRAF	AP3B1	BRAF		NM_004333.4						Thyroid
ARHGEF18-INSR	ARHGEF18	INSR		NM_000208.2						Ovarian
ARHGEF2-NTRK1	ARHGEF2	NTRK1		NM_002529.3						Glioblastoma
ATG7-BRAF	ATG7	BRAF		NM_004333.4						Skin
AXL-MBIP	AXL	MBIP	NM_021913.4							
BAG4-FGFR1	BAG4	FGFR1		NM_023110.2						Lung

Biological class	Reporting		
Pathogenic	must be reported		
Likely pathogenic	must be reported		
VUS	must be reported clearly separated from pathogenic and		
	likely pathogenic variants, but should not be clinically		
	discussed		
Likely benign	should not be reported For DNA: common variant in		
Benign	should not be reported the population MAF>0,1%		


=> Database for fusion transcript in the "normal population" ??

Clinical Classification

- Clinical Interpretation: Impact on Prognosis? Therapy?
 - -> Literature review, guidelines

Questions?

