

Chronic Lymphocytic Leukemia

MB&C2024 UCLL - Steven Weekx - 9/2/2024

CLL

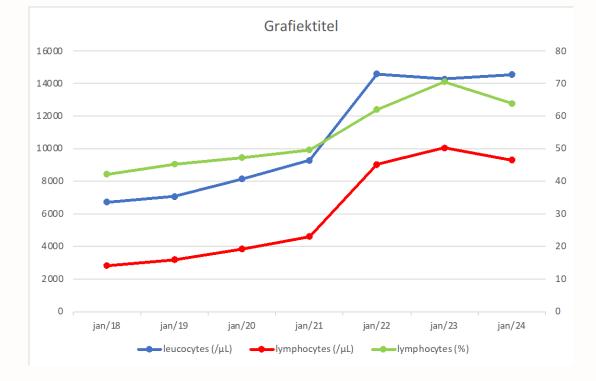
- 3 Cases
- CLL, the facts
- Pathogenesis
- Laboratory findings & diagnosis
- Differential diagnosis
- Prognostic and predictive markers
- Treatment strategy
- MBL, SLL, atypical CLL

Casel: Jos, 78y

- Yearly control GP, no complaints
- Physical examination: normal
- Ex-nicotine; occasional ethyl
- Welder
- Elevated PFOS values (Zwijndrecht)
- Laboratory results

Casel: Jos, 78y

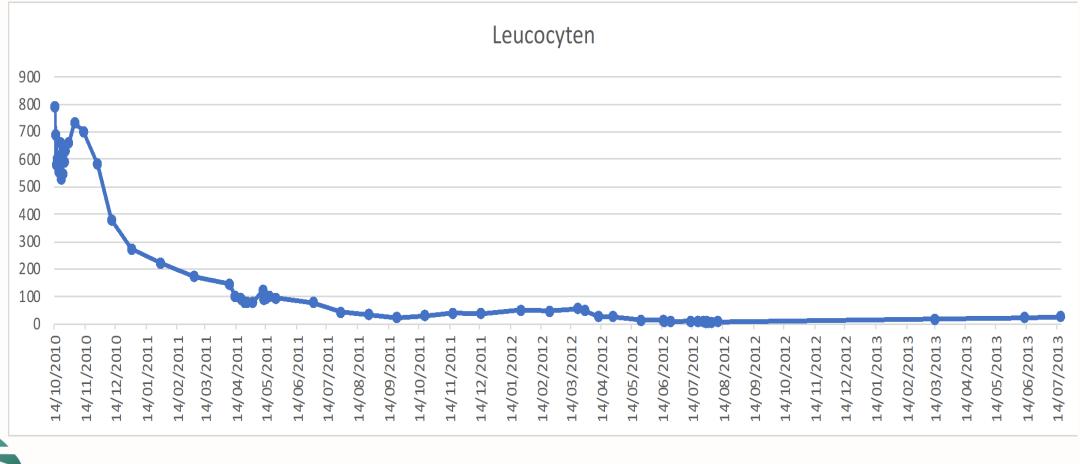
HEMATOLOGIE				
Erytrocyten		4,60	$\times 10*6/\mu L$	4,35 - 5,61
Hemoglobine		14,3	g/dL	13,4 - 16,5
Hematocriet		41,8	%	39,7 - 49,3
MCV		90,9	fL	83,2 - 96,0
MCH		31,1	pg	27,8 - 32,5
MCHC		34,2	g/dL	32,3 - 35,7
Leukocyten	+	14260	/µL	3720 - 10540
Formule				
Neutrofiele segmenten	-	22,3	%	39,2 - 72,9
Eosinofielen		1,3	%	≤8,4
Basofielen		0,4	%	≤1,5
Lymfocyten	+	70,5	%	15,7 - 47,0
Monocyten	-	5,5	%	5,7 - 13,7
Formule (absoluut)				
Neutrofiele segmenten		3180	$/\mu$ L	1760 - 7031
Eosinofielen		185	$/\mu$ L	≤559
Basofielen		57	$/\mu$ L	≤102
Lymfocyten	+	10053	/µL	964 - 3440
Monocyten		784	$/\mu$ L	320 - 979
Trombocyten	-	137	$\times 1.000/\mu L$	148 - 362
Microscopie				
		Aanwezigheid van aberrante lymfocyten		
		Enkele gelyseerde cellen		



Casel: Jos, 78y

date	leucocytes (/μL)	lymphocytes (%)	lymphocytes (/μL)
nov/18	6720	42,1	2829
okt/19	7060	45,2	3191
nov/20	8130	47,2	3837
nov/21	9280	49,6	4603
dec/22	14570	62	9033
nov/23	14260	70,5	10053
jan/24	14550	63,9	9297

- CLL
- No treatment
- Follow up hematologist 6-12 months



Case2: Frans, 75y

- Fatigue, dizziness, fainted, weight loss -5kg
- Cachectic, several lymph nodes, splenomegaly
- Nicotine 25 pack years
- I brother + AML; I brother + CLL (10 y after diagnosis)
- Lab:
 - Hyperleukocytosis: 800.000 WBC/μL → hyperviscosity
 - Macrocytic anemia, thrombopenia due to bone marrow invasion of CLL
- Treatment for CLL
- De novo diagnosis of squamous cell carcinoma (metastatic in bone and lung)

Case2: Frans, 75y

Case3: Julien, 58y

- Consult GP: During 2 months 'up and down', fatigue, sore throat, cough, ... Now better.
- Active sport (walking, biking, rowing, ...) no problems
- No pain, normal intake, no weight loss, no fever, no night sweating
- Dock worker
- Nicotine: stop in 1986. Ethyl: 10 15 U/week
- Cervical and axillar a few, very little lymphnodes
- No organomegaly, no skin laesions

Case3: Julien, 58y

HEMATOLOGIE			
Erytrocyten	- 3,68	×10*6/μL	4,35 - 5,61
Hemoglobine	- 12,3	g/dL	13.4 - 16.5
Hematocriet	- 36,7	%	39.7 - 49.3
MCV	+ 99,7	fL	83.2 - 96.0
MCH	+ 33,4	pg	27.8 - 32.5
MCHC	33.5	g/dL	32.3 - 35.7
Reticulocyten	+ 26,2	/1.000 RBC	7.7 - 23.0
Abs.aantal reticulocyten	96.4	× 1.000/μL	33.8 - 114.2
Leukocyten	- 3240	/ <i>µ</i> L	3720 - 10540
Formule			
Neutrofiele segmenten	- 27,2	%	39.2 - 72.9
Eosinofielen	0.6	%	≤8.4
Basofielen	0.6	%	≤1,5
Lymfocyten	+ 68,8	%	15.7 - 47.0
Monocyten	- 2,8	%	5.7 - 13.7
Formule (absoluut)			
Neutrofiele segmenten	- 881	/μL	1760 - 7031
Eosinofielen	19	/ <i>µ</i> L	≤559
Basofielen	19	/μL	≤102
Lymfocyten	2229	/µL	964 - 3440
Monocyten	- 91	/µL	320 - 979
Trombocyten	- 110	× 1.000/μL	148 - 362

Case3: Julien, 58y

Flow cytometry:

- Presence of a population monoclonal B-lymphocytes (23 I IμL) with Kappa light chain restriction.
- Phenotype: CD45+, CD19+, CD20+ (dim), CD10-, CD5+, FMC7-, CD23+, CD22+.
- CLL-phenotype → low count-MBL
- very small risk of progression to CLL, no specific follow-up

ZIEKENHUISaan de STROON

CLL epidemiology

- Incidence: 4.5 / 100 000 / year (80+ y: > 30 / 100 000 / year)
- Median age diagnosis: 70y (9% < 45y)
- M/F: 1.5/1 (1.9/1)
- Lifelong risk: 0.6%
- 1.1% of all new cancer cases
- 0.7% of all cancer deaths
- 5 year survival 65.1% (1975) → 87.2% (2021); 10 year survival 82%

CLL geographical & etnical considerations

- Incidence varies by race and geographic location:
 - White Americans > African Americans > Asian Pacific Islanders
 - Incidence in China and Japan 10 times lower than in Western countries
- Genetic factors rather than environmental factors
 - Japanese in Hawaii no higher incidence than native Japanese
 - Frequency of CLL-associated genetic mutations is lower in African Americans

CLL environmental considerations

- Debatable ... few reports ...
 - Exposure to pesticides and herbicides among farmers
 - Agent orange (Vietnam War)
 - Radon exposure
 - Ionizing radiation \rightarrow all types of leukemia \nearrow , except for CLL
 - Respiratory tract infections, cellulitis and herpes zoster infection can presage CLL

CLL family studies

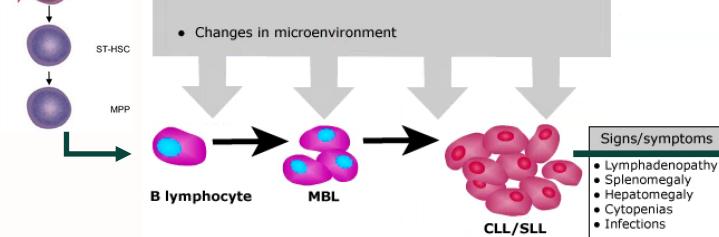
- 17% of first degree family members of CLL patients have MBL
- Dabatable ... genetic anticipation (CLL develops at an earlier age in successive generations)

CLL pathogenesis

Complex, multistep process \rightarrow accumulation of B-lymphocytes

- Monoclonal
- Mature
- Functionally incompetent
- PB, BM, LN, spleen

Sequential process, minority of cases progressing at each step


CLL pathogenesis

Pathogenic events

- · Abnormal response to antigenic stimulation
- Cytogenic abnormalities: del(13q14), Trisomy 12, del(11q), del(17p)
- · Additional genetic changes (eg, SF3B1, NOTCH1, MyD88)

Multistep, sequential process →

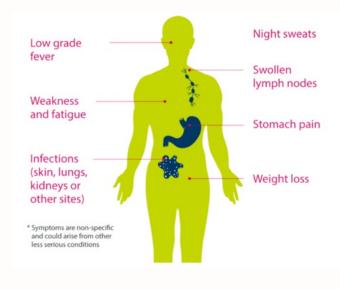
- I. Impaired apoptosis
- 2. Increased proliferation

Cumulative damage

Normal to MBL

Asymptomatic
CLL

\$
Symptomatic
CLL


LT-HSC


Random second-hit dependent conversion

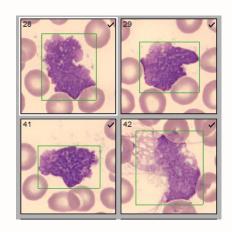
MBL to CLL/SLL

CLL clinical presentation

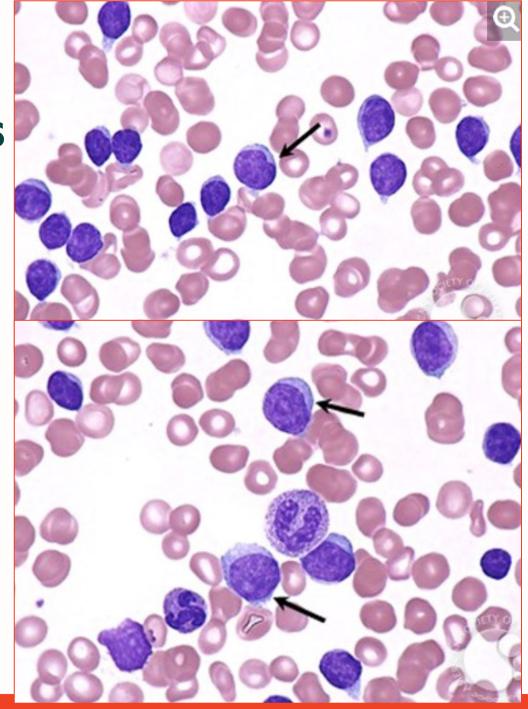
- NO symptoms... accidental finding during blood control
- Painless swelling of lymph nodes
- (Hepato)Splenomegaly
- B-symptoms (5 10%)
 - Weight loss > 10% in 6 months
 - Fevers > 38°C > 2 weeks (without evidence of infection)
 - Nights sweats (without evidence of infection)

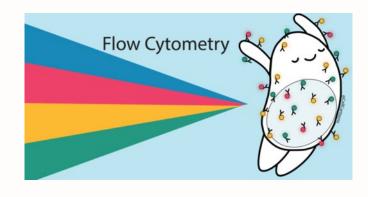
CLL laboratory findings

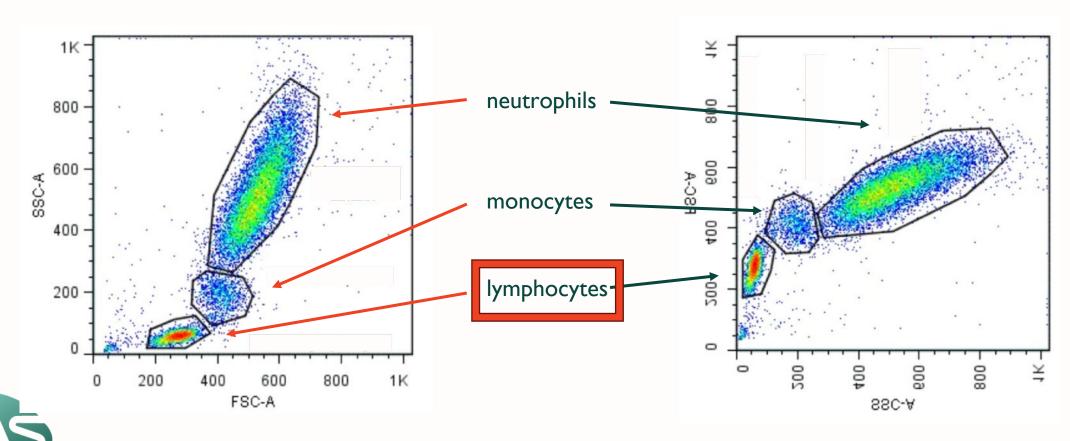
- Lymphocytosis (PB / BM); threshold > 5000/μL monoclonal Blymphocytes
- Cytopenia: neutropenia, anemia and thrombocytopenia, usually mild
- Immunoglobulin abnormalities
 - Hypogammaglobulinemia (25%), usually IgG and IgA and IgM
 - Polyclonal increase of gammaglobulins in 15%
 - Monoclonal protein in 5%
 - Sometimes detected years before CLL diagnosis
- No characteristic abnormalities in blood chemistry
 - LDH and beta-2-microglobulin levels

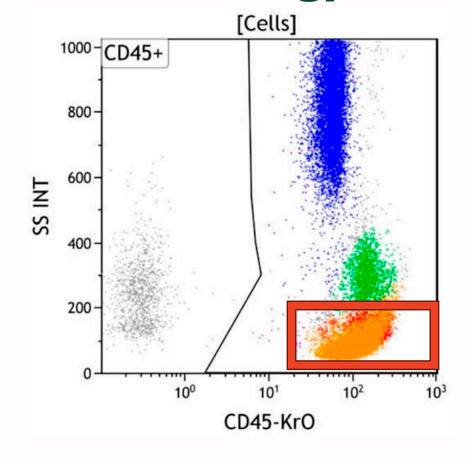


CLL laboratory findings

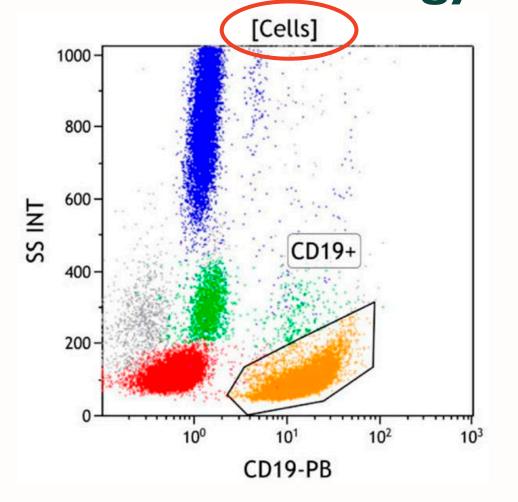

Peripheral smear

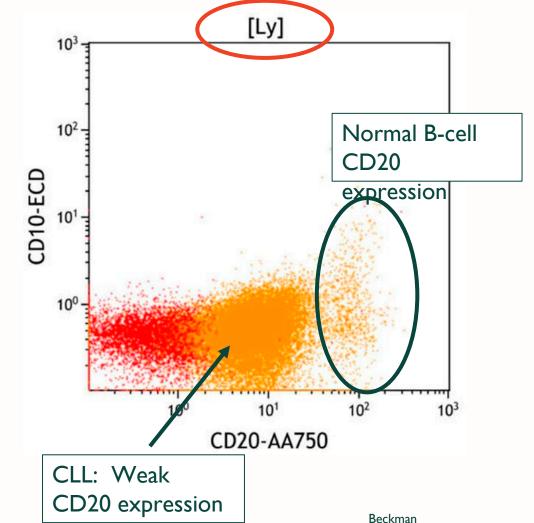

- Small, mature lymphocytes, clumped chromatin, narrow rim cytoplasm
- Few 'prolymphocytes': younger appearance, lacy chromatin, prominent nucleolus
- Smudge / basket cells
- Bone marrow aspirate and biopsy: in se not required for diagnosis CLL
 - Increased cellularity
 - Lymphocytes > 30% of NC

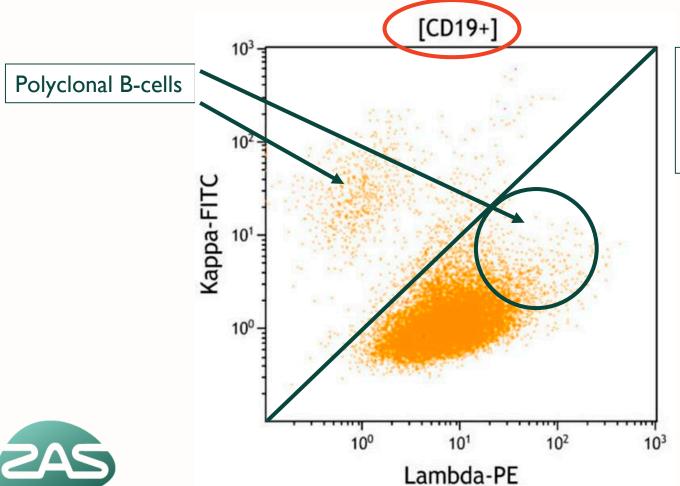


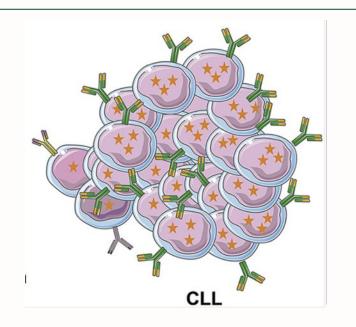


CLL flow cytometry

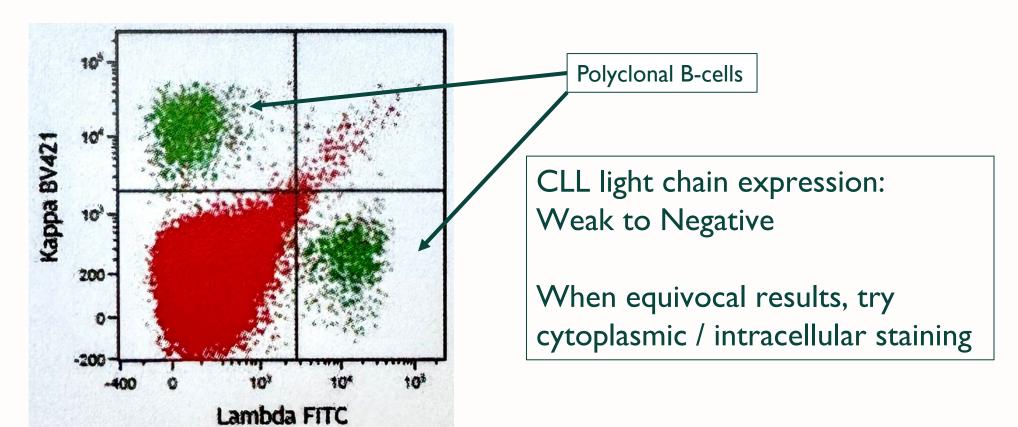



CLL FCM strategy CD45

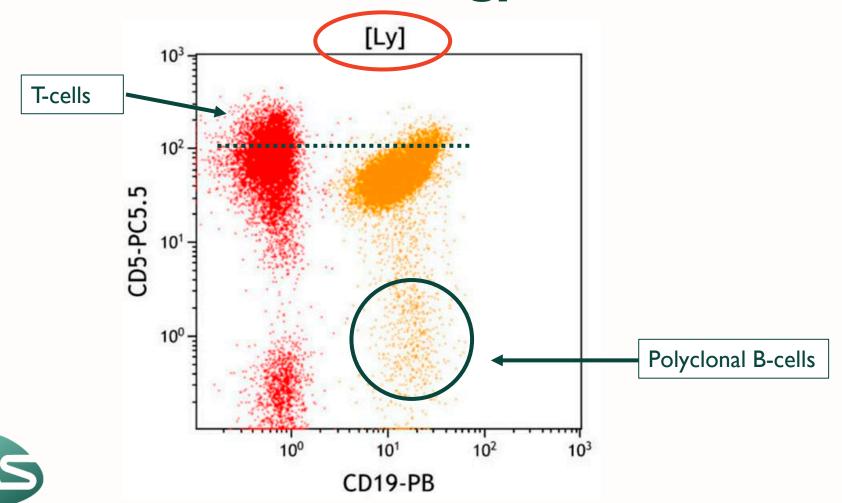

CLL FCM strategy CD19 - CD20



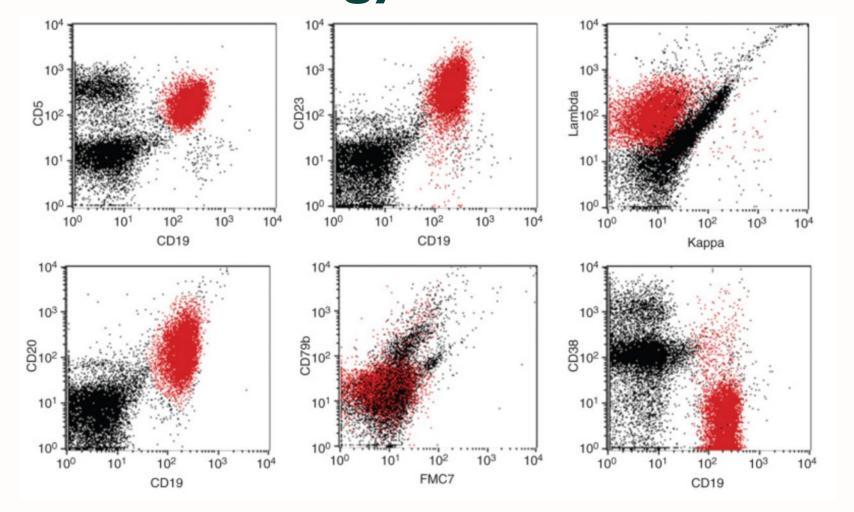
CLL FCM strategy κ/λ clonality


Normal κ/λ ratio ~ 2:1

Monoclonal κ/λ ratio > 3:1 or < 0,3:1

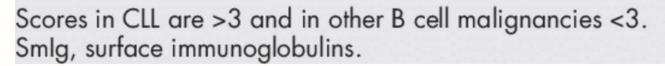

ZIEKENHUISaan de STROOM

CLL FCM strategy κ/λ clonality

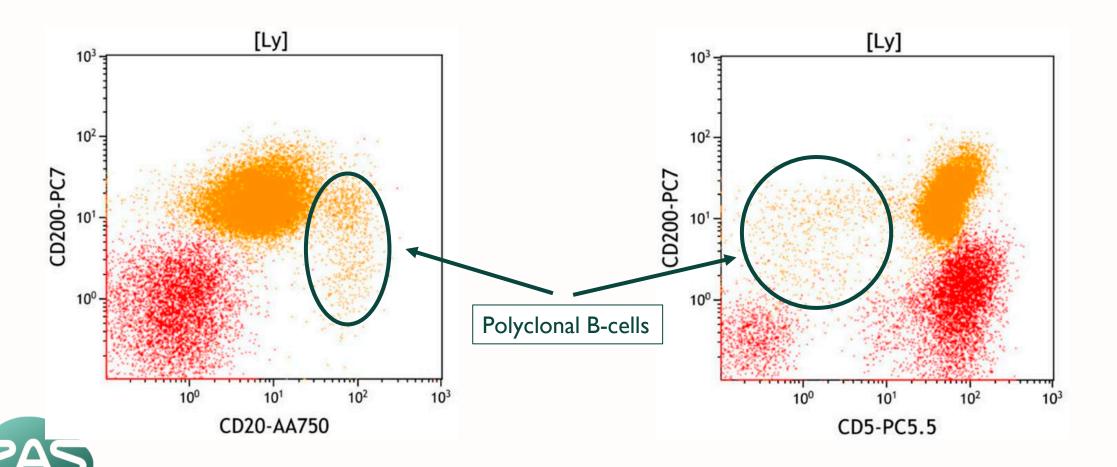


CLL FCM strategy CD5 B- vs T-cells

CLL FCM strategy CD23 – FMC7 – CD22



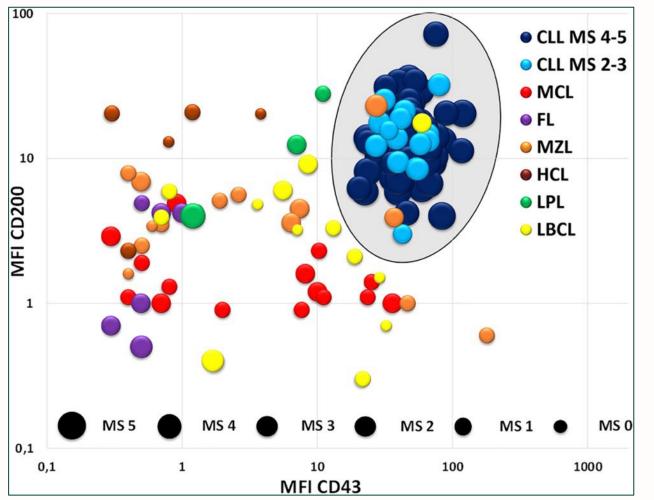
CLL scoring system

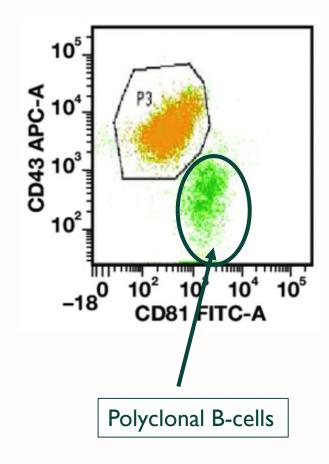

Matutes - Catovsky

	Score points				
Marker	1	0			
Smlg	Weak	Strong			
CD5	Positive	Negative			
CD23	Positive	Negative			
FMC7	Negative	Positive			
CD22 or CD79b	Weak	Strong			

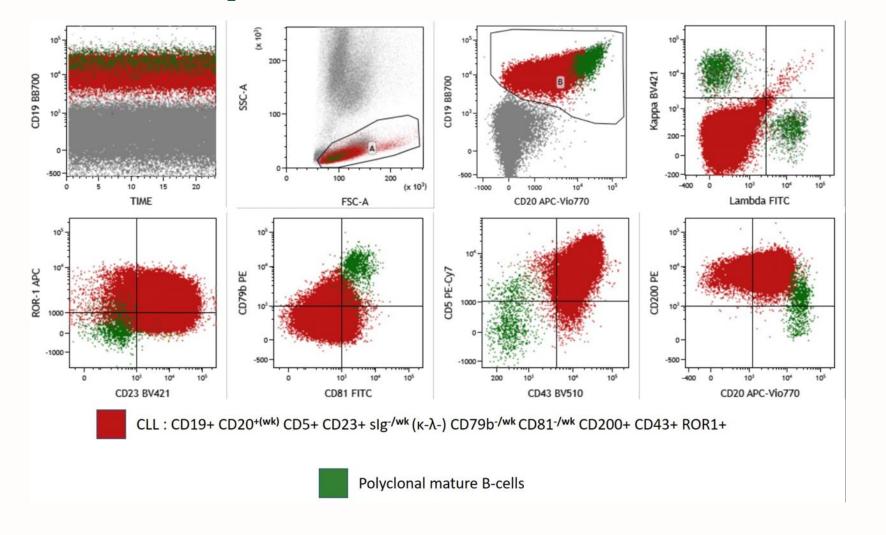
CLL extra markers CD200

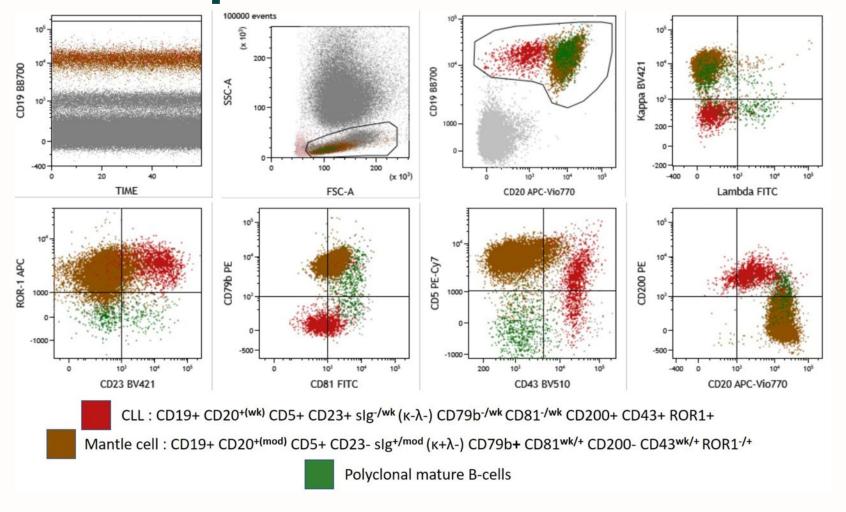
CLL scoring system


Matutes - Catovsky


Scoring system	Sensitivity % (95% CI)	Specificity % (95% CI)	CLL vs. non-CLL % (95% CI)
CD5, CD23, FMC7, sIgM, CD79b	94.97 (91.0 - 97.6)	100.0 (92.3 – 100.0)	99.4 (97.4–100.0)
CD5, CD23, FMC7, sIgM, CD79b, CD200	100.0 (98.2 – 100.0)	98.04 (89.6 - 100.0)	100.0 (98.4–100.0)
CD5, CD23, sIgM, CD200	93.97 (89.7 - 96.8)	100.0 (93.0 - 100.0)	99.8 (98.1–100.0)

https://doi.org/10.1371/journal.pone.0247491.t005


CLL extra markers CD200 / CD43 / CD81



CLL examples

CLL examples

ZIEKENHUISaan de STROOM

CLL FCM all together now

Flow cytometry in the diagnosis of mature B-cell lymphoproliferative disorders

Camille Debord | Soraya Wuillème | Marion Eveillard | Olivier Theisen | Catherine Godon | Yanick Le Bris | Marie C. Béné |

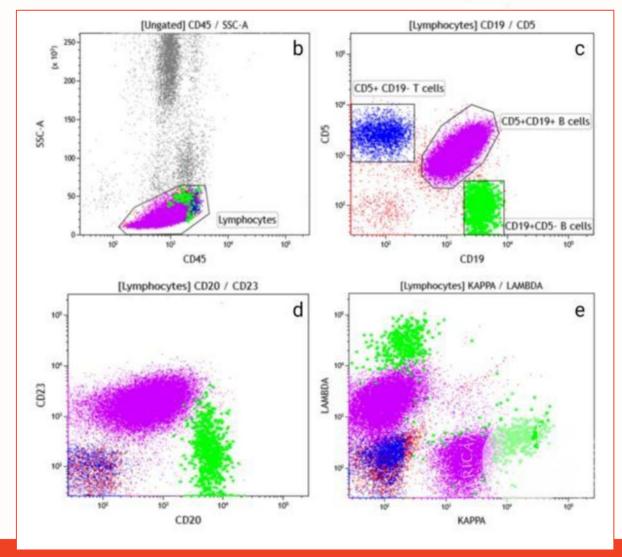
Major markers discriminating other B-cell lymphoproliferative malignancies

	CLL
CD19	+
CD5	+
CD23	+
slg	low/-
CD79b	low/-
CD20	low
FMC7	-
CD22	low/-
CD10	-
CD200	++
CD43	+
CD81	low/-
CD103	-
CD123	-
CD11c	-/+
CD25	-/+
CD13	1-

Differential diagnosis of lymphocytosis

	CD5+		CD5-	CD5-			Villous lymphocytes			High grade	
	CLL	MCL	LPL/WM	FL	BPLL	MZL	HCL	HCLv	SDRPL	BL	DLBCL
CD19	+	+	+	+/low	+	+	+	+	+	+	+
CD5	+	+	-/+	-	-	-/+	-	-	-	-	-/+
CD23	+	low/-	-/+	-	-	-/+	-	-	-	-	-/+
slg	low/-	+	+	+	++	+	+	+	+	+	+/-
CD79b	low/-	++	+	+	++	++	+	low	low	low	+
CD20	low	+	+	+	++	+	++	+	+	+	+
FMC7	-	+/-	+	+	++	+	+	+	+	+	+
CD22	low/-	+	low	+	++	+	++	+	+	+	+
CD10	20	-	-	+	-	-	-	_	_	++	-/+
CD200	++	_	+/-	+/-	-/+	+	++	+	+	-	-/+
CD43	+	-/+	-/+	-	+	-	++	+	-:	++	-/+
CD81	low/-	+	+	+		+	+	++	+	+	+
CD103		-		-	-	-1	++	++	-	-	-
CD123	27	-	-	-	-	-	++	-	_	-	_
CD11c	-/+	-	-	-/+	1.77	-/+	++	+	+	-	
CD25	-/+	-	+	-/+	-	-/+	++	-	-	-	+/-
CD13	-	-	+	-	_	-/+	_	-	-	-	-

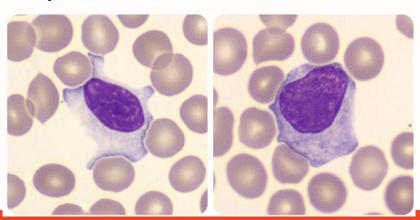
Note: -/+ = usually negative but may be positive. +/- = usually positive but may be negative. ++ = strong positivity.


Gray cells indicate major discriminating markers.

Abbreviations: BL, Burkitt lymphoma; BPLL, B prolymphocytic leukemia; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; HCL, hairy cell leukemia; HCLv, hairy cell leukemia variant; LPL/WM, lymphoplasmacytic lymphoma/Waldenström macroglobulinemia; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; SDRPL, splenic diffuse red pulp lymphoma.

Biclonal CLL

- 1% of cases
- 2 populations with CLL phenotype CD19+, CD5+, CD23+
 - one Kappa
 - one Lambda
- PCR for immunoglobulin heavy chain gene rearrangement



Differential diagnosis of lymphocytosis

- Reactive
 - Transient due to infection: lymphocytosis < 3 months
 - Not clonal
 - No typical CLL phenotype
 - No bone marrow infiltration
 - 'atypical lymphocytes' (activated T-cells)
 - Viral infections, Infectious mononucleosis, pertussis, ...

Differential diagnosis of lymphocytosis

- PLL
 - > 55% prolymphocytes (> 90%)
 - Bright Smlg
 - CD5-
 - Different classifications
 - WHO-classification 5th edition (2022): new entity: "splenic B-cell leukemia with prominent nucleoli" (SBLPN)
 - International Consensus Classification ICC (2022): B-PLL

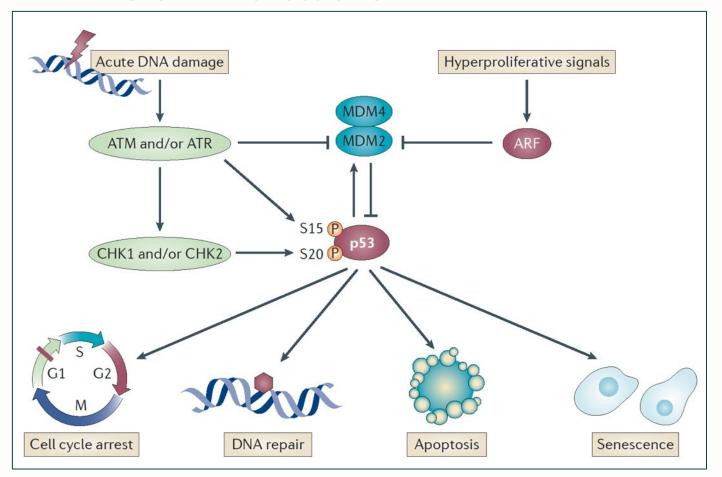
CLL prognostic and predictive markers

- Prognostic (clinical outcome; PFS; OS)
 - Rai-Binet stage → higher stage, shorter survival
 - Independent of therapy received
- Predictive (likelihood of response to a treatment)
 - TP53 mutation \rightarrow no response to chemoimmunotherapy \rightarrow use targeted therapy
- Prognostic AND predictive (combination)
 - TP53 mutation → outcome of targeted therapy is inferior compared with patients with wild type TP53

ZIEKENHUISaan de:STROC

CLL clinical staging

Stage according to Rai	Definition by Rai	Stage according to Binet	Definition by Binet
Rai 0	Lymphocytosis >5×10 ⁹ /L	Binet A	Hb≥100 g/L (6.21mmol/L), platelets ≥100×109/L, ≥3 involved lymphoid sites
Rai I	Lymphocytosis and lymphadenopathy	Direct / C	≥3 involved lymphoid sites
Rai II	Lymphocytosis and hepatomegaly and/or splenomegaly with/without lymphadenopathy	Binet B	Hb ≥100 g/L (6.21 mmol/L), platelets ≥100×109/L, ≥3 involved lymphoid sites
Rai III	Lymphocytosis and Hb<110 g/L (6.83 mmol/L) with/without lymphadenopathy/organomegaly	Binet C	Hb<100 g/L, platelets ≥100×109/L
Rai IV	Lymphocytosis and platelets <100x109/L with/without lymphadenopathy/organomegaly	Diriet C	TID TOO g/L, platelets = TOOXTO7/L


CLL predictive markers

- TP53 tumor-suppressor gene on the short arm of chromosome 17
- Inactivated by del(17p) and/or point mutations
- Testing before start of therapy
 - $del(17p) \rightarrow FISH$; 7-10% of the patients; even higher after relapse
 - TP53 mutations → Sanger sequencing or NGS; 10-47% of the patients
- Re-assessment when progressing disease in previously TP53 wild-type cases
- Impared DNA damage response → no (durable) response to chemoimmunotherapy → targeted therapy

ZIEKENHUISaan de STROOM

CLL TP53 mutation

Cells without normal TP53 function (Del(17p) or TP53 mutation) cannot trigger apoptosis in response to chemotherapy induced DNA damage.

CLL predictive markers

- Assesment the Immunoglobuline Gene Heavy Chain Variable region
 IGHV gene mutation status:
 - **IGHV-mutated** CLL (<98% germline identity). M-CLL (50% of patients) → prolonged durable remissions after chemoimmunotherapy
 - IGHV-unmutated CLL (≥98% germline identity). U-CLL
 - 97-97,9%: borderline mutated
 - Subset #2 configuration → IGHV-mutated with poorer prognosis
- Testing before start of therapy with Sanger sequencing
- No need to repeat the test (IGHV gene mutation status does not change over time)

CLL predictive markers

- NOTCHI mutations
 - No routine
 - Predictive value still uncertain
 - ∠ CD20 expression → less effective anti-CD20 therapy
- Mutations in B-cell receptor pathway (BTK); BCL2 gene mutations
 - Uncommon at diagnosis
 - Testing at disease progression

CLL prognostic markers

- Rai-Binet stage
- Del(17p) and TP53 mutation status
 - outcome of targeted therapy is inferior compared with wild type TP53
- Immunoglobuline Gene Heavy Chain Variable region IGHV gene mutation status
 - → U-CLL more aggressive clinical course
- Lymphocyte doubling time < I year: more aggressive clinical course
- Beta2-microglobulin: increasing levels, poorer prognosis
- (less clear: CD38 expression; intracellular ZAP70: inferior clinical course)

ATM DE 13 Q

CLL pretreatment evaluation genetics

- Very heterogeneous genetic landscape \rightarrow no unique genetic lesion
- Most frequent chromosomal aberrations at diagnosis (FISH):
 - del(13q) (50-60%) \rightarrow favorable outcome
 - Trisomy I2 (15-20%) → unclear prognostic value
 - del(IIq) (10-20%) \rightarrow intermediate risk prognosis
 - del(17p) (5-10%) \rightarrow worse clinical outcome
- Detection of complex karyotype (>3 or > 5 aberrations)
 - → worse prognosis

CLL prognostic scoring systems

Prediction of time to first treatment or prediction of estimated overall survival (OS)

TIME TO FIRST TREATMENT ACCORDING TO CLL-IP

months

Table 2. Prognostic Scoring Systems in Chronic Lymphocytic Leukemia

Variable	Points	Risk group (total points)	5-y cumulative risk of treatment start, %	SURVIVAL PROBABILITY ACCORDING TO CLL-100 Low risk
International Prognostic Score for Asymptomatic Early-stage Disease (IPS-E)				80 70 ≥ 60 1 50 0 30 0 30 0 30 0 Very High
Unmutated IGHV	1	Low (0)	8.4	O 30 O 20 10
ALC ≥15 × 10 ⁹ /L	1	Intermediate (1)	28.4	0 12 24 36 48 60 72 84 96 108120 months
Palpable lymphadenopathy	1	High (2-3)	61.2	
CLL International Prognostic Index (CLL-IPI)			5-y overall survival, %	10-y overall survival, %
Del(17p12) or TP53 variant	4	Low (0-1)	93	79
β ₂ microglobulin >3.5 mg/L	2	Intermediate (2-3)	79	39
Unaltered IGVH	2	High (4-6)	63	22
Rai stage 1-4	1	Very high (7-10)	23	4
Age >65 y	1			

CLL to treat or not?

CLL-IPI category	OS at 5 years	Potential clinical consequence
Low-risk	93.2%	Do not treat
Intermediate- risk	79.3%	Do not treat except if the disease is really symptomatic
High-risk	63.3%	Treatment indicated except if the disease is asymptomatic
Very high-risk	23.3%	If you need to treat, do not use chemotherapy but rather targeted agents or treatment in clinical trials

- → Most patients: no need for treatment at time of diagnosis
- → Wait and see / watchful waiting

TABLE 2 Criteria to define symptomatic or active disease according to iwCLL guidelines⁵

- 1. Evidence of progressive marrow failure as manifested by the development of, or worsening of, anemia and/or thrombocytopenia. Cut-off levels of Hb <10 g/dL or platelet counts of <100 000/μL are generally regarded as indication for treatment. However, it should be pointed out that in some patients platelet counts of <100 000/μL may remain stable over a long-period of time; this situation does not automatically require therapeutic intervention
- Massive (i.e., ≥6 cm below the left costal margin) or progressive or symptomatic splenomegaly
- 3. Massive nodes (i.e., ≥10 cm in longest diameter) or progressive or symptomatic lymphadenopathy
- 4. Progressive lymphocytosis with an increase of ≥50% over a 2-month period, or lymphocyte doubling time (LDT) of less than 6 months. LDT can be obtained by linear regression extrapolation of absolute lymphocyte counts (ALC) obtained at intervals of 2 weeks over an observation period of 2–3 months; patients with initial blood lymphocyte counts of <30 000/µL may require a longer observation period to determine the LDT. Factors contributing to lymphocytosis other than chronic lymphocytic leukemia (e.g., infections, steroid administration) should be excluded</p>
- 5. Autoimmune complications including anemia or thrombocytopenia poorly responsive to corticosteroids
- 6. Symptomatic or functional extranodal involvement (e.g., skin, kidney, lung, spine)
- 7. Disease-related symptoms as defined by any of the following:
 - (a) Unintentional weight loss ≥10% within the previous 6 months
 - (b) Significant fatigue (i.e., ECOG PS 2 or worse; cannot work or unable to perform usual activities)
 - (c) Fevers ≥100.5°F or 38.0°C for 2 or more weeks without evidence of infection
 - (d) Night sweats for ≥1 month without evidence of infection

CLL treatment strategy

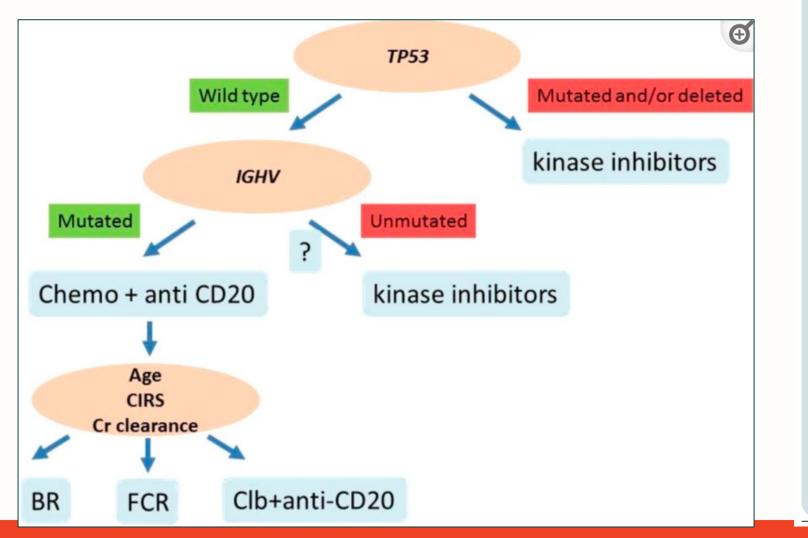


Figure 1. The Treatment Approach to Chronic Lymphocytic Leukemia

Treatment protocol for chronic lymphocytic leukemia

(1) First-line treatment

Normal TP53

Fixed-duration treatment:

Venetoclax + obinutuzumab

Indefinite treatment:

 Covalent BTK inhibitors acalabrutiniba or zanubrutiniba or ibrutinib

Aberrant TP53

Indefinite treatment:

 Covalent BTK inhibitors (preferred)^b acalabrutiniba or zanubrutiniba or ibrutinib

Fixed-duration treatment^c:

 Venetoclax + obinutuzumab; consider continuation of venetoclax in patient with abnormal TP53, especially in patients with evidence of detectable disease at 12 mo

If disease progression or intolerance to first-line treatment

(2) Second-line treatment

Patient previously treated with covalent BTK inhibitor Intoleranced:

- Switch to other BTK inhibitor
- Venetoclax + rituximabe

Progression:

- Venetoclax + rituximabe
- Noncovalent BTK inhibitor (pirtobrutinib) when available

Patient previously treated with venetoclax

Progression while receiving treatment or early after discontinuation of venetoclax:

- Acalabrutinib^f or zanubrutinib^f or ibrutinib
- Noncovalent BTK inhibitor (pirtobrutinib) when available

Progression late after discontinuation of venetoclax^g:

- Acalabrutinib^f or zanubrutinib^f or ibrutinib
- Consider retreatment with venetoclax
- Noncovalent BTK inhibitor (pirtobrutinib) when available

If disease progression after BTK inhibitors or venetoclax

(3) Subsequent treatment

Prior failure of covalent BTK inhibitors and venetoclax:

- Noncovalent BTK inhibitor (pitobrutinib) when available (preferred)^h
- PI3K inhibitors: idelalisib + rituximab or duvelisib

Consideration for cellular immunotherapy:

- Consider CAR-T therapy when/if available in patients with a controlled disease
- Allo-HCT if no access to CAR-T or after CAR-T

CLL MRD minimal residual disease

- MRD: small number of residual leukemic cells in PB or BM after therapy
- MRD positive: ≥ 1/10.000 or ≥ 0,01%
- Prediction of PFS (progression free survival) and OS (overall survival)

Table 1. Comparison of CLL minimal residual disease panels studied (volume per test in parentheses).

	ERIC 8-color M	RD panel	Lyophilized 1	10-color mLST1	Liquid 10-color mLST2		
Fluorochrome	Marker	Clone	Marker	Clone	Marker	Clone	
V450	CD5 (5 μL)	L17F12	CD20/CD4	L27/SK3	CD20 (5 μL)	L27	
V500c	CD3 (5 µL)	SK7	CD45	2D1	CD45 (5 μL)	2D1	
BV605	_	_	CD3	SK7	CD3 (5 µL)	SK7	
FITC	CD81 (20 μL)	JS-81	CD8/Lambda	SK1/1-155-1	Lambda (20 μL)	1-155-2	
PE	CD79b (20 μL)	SN8	CD56/Kappa	MY31/TB28-2	Kappa (20 μL)	TB28-2	
PerCPcy5.5	CD22 (5 μL)	S-HCL-1	CD5	L17F12	CD5 (15 μL)	L17F12	
PE-Cy7	CD19 (5 μL)	SJ25C1	CD19/TCRgd	SJ25C1/11F2	CD19 (5 μL)	SJ25C1	
APC	CD43 (5 μL)	1G10	CD23	EBVCS5	CD23 (5 μL)	EBVCS5	
APC-R700		_	CD200	OX104	CD200 (5 μL)	OX104	
APC-H7	CD20 (5 μL)	L27	CD38	HB7	CD43 (5 μL)	1G10	

APC: allophycocyanin; BV605: Brilliant Violet 605TM; CLL: chronic lymphocytic leukemia; Cy: cyanin; ERIC: European Research Initiative on CLL; FITC: fluorescein isothiocyanate; LST: lymphoid screening tube; MRD: minimal residual disease; PE: phycocrythrin; PERCP: peridinin-chlorophyll-protein.

CLL Richter transformation

- Richter Syndrome
- Aggressive lymphoma
- Incidence 0,5% / year
- - DLBCL (90-95%); poor prognosis
 - Hodgkin lymphoma (10%)
 - Histiocytic/dendritic cell neoplasms (very rare)

ZIEKENHUISaan de STROOM

CLL MBL monoclonal B-cell lymphocytosis

- 3 subtypes
 - Low-count MBL
 - Clonal CLL/SLL phenotype
 - Count < 500/μL
 - No other features diagnostic of B-lymphoproliferative disorder
 - CLL/SLL-type MBL
 - Clonal CLL/SLL phenotype
 - Count ≥ 500/μL but < 5000 /μL
 - No other features diagnostic of B-lymphoproliferative disorder
 - Non-CLL/SLL-type MBL
 - Any monoclonal non-CLL/SLL phenotype
 - No symptoms or features diagnostic of B-lymphoproliferative disorder
 - Majority: marginal zone (MZ) origin
 - Thresholds have yet to be formally defined

ZIEKENHUISaan de STROON

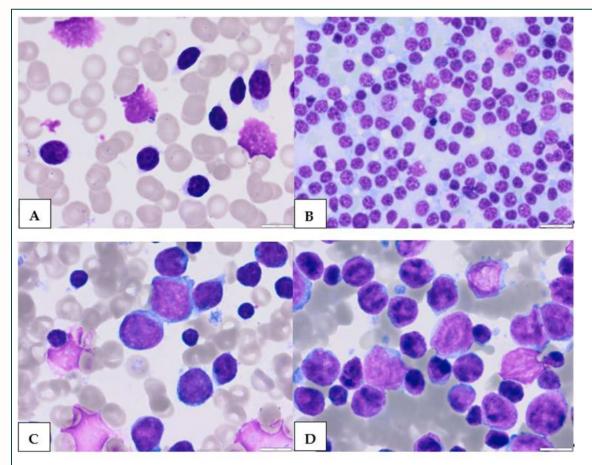
MBL monoclonal B-cell lymphocytosis

- Asymptomatic condition
 - > no lymphadenopathy, organomegaly, other features diagnostic of Blymphoproliferative disorder
 - frequently found incidentally
 - Initial trigger for investigation might be fatigue, weight loss, night sweats, increased infections, but these do not exclude MBL if there are no other features of a haematological malignancy (eg pancytopenia, lymphadenopathy, organomegaly, ...)
- Localization: PB (detectable in BM or secondary lymphoid tissue)
- Using high sensitivity FCM, it can be found in
 - 5% 40-50y
 - 5-25% 65-80y
 - 50-75% >90y

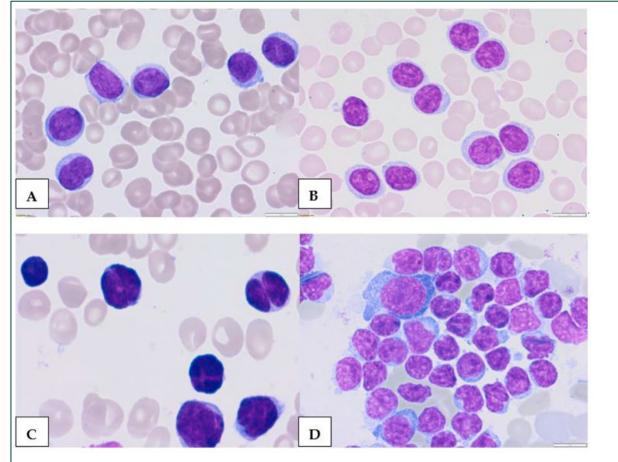
ZIEKENHUISaan de STROON

MBL monoclonal B-cell lymphocytosis

- Cytomorphology ~ CLL
- FCM
 - CLL/SLL-type ~ CLL
 - Non-CLL/SLL-type ~ MZ or other B-cell lymphoma
- Progression to CLL?
 - CLL/SLL-type: 0,5 2% per year
 - Higher if > 3000/μL
 - Very low if < I 500/μL
 - Low count MBL: very small risk of progression to CLL


CLL SLL Small lymphocytic lymphoma

- SLL same disease as CLL
- Tissue based diagnosis:
 - organ enlargement (lymphadenopathy > 15mm)
 - Invasion of this tissue by 'CLL-cells'
- SLL is used when < 5000 circulating monoclonal B-cells AND nodal, splenic or other extramedullary involvement


- NOT included in WHO HAEM5 nor in ICC classifications
- Inheritance of the FAB classification (1989)
- Atypical morphology
- Atypical immunophenotype
- Atypical genotype

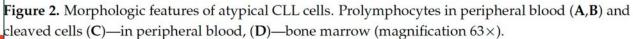
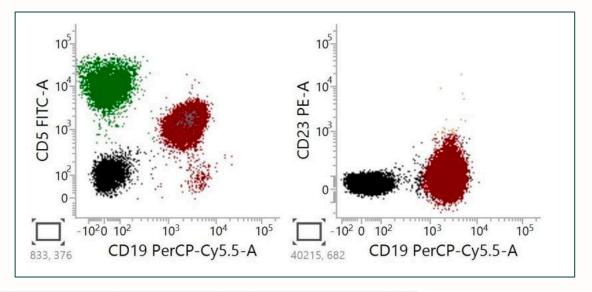


Figure 1. Morphological features of classic (A,B) and large (C,D) CLL cells. Mature CLL cells are lymphocytes with a narrow border of cytoplasm and partially aggregated chromatin in a dense nucleus ((A)—peripheral blood, (B)—bone marrow). Large atypical CLL cells ((C)—peripheral blood, (D)—bone marrow) (magnification 63×).


Atypical morphology

Atypical immunophenotype

	Markers											
Disease	CD19 CD20 CD22	CD5	CD23	FMC7	CD200	CD45	CD43	CD180	Cyclin D1	CD79b	LEF1	SOX11
Typical CLL	+ (dim)	+	+ (strong)	_	+ (strong)	-/+	+	+/- (week)	-	+/- (week)	+	_
Atypical CLL	+	_	_	_	+	+	+	+	_	NR	+/-	NR
MCL	+ (strong)	-	-	+/-	_	+	-/+	+ (week)	+	+/-	-	+

- 'Atypical' genotype
 - Trisomy 12 most frequently found abnormality in atypical CLL, however also found in 'typical' CLL ...

- Atypical CLL:
 - more agressive clinical behaviour, worse prognosis
 - no therapeutic implications (treatment ~ CLL)
 - clinical significance still debated

Literature

- Robak, T.; et al Atypical Chronic Lymphocytic Leukemia—The Current Status. Cancers 2023, 15, 4427.
- Paul J. Hampel et al. Chronic lymphocytic leukemia treatment algorithm 2022 Blood Cancer Journal (2022) 12:161
- Hallek M, Al-Sawaf O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am | Hematol. 2021;96(12): 1679-1705
- Mazyar Shadman Diagnosis and Treatment of Chronic Lymphocytic Leukemia A Review JAMA. 2023;329(11):918-932
- Claudia Pérez-Carretero The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment Diagnostics 2021, 11, 853
- B. Eichhorst Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up https://doi.org/10.1016/j.annonc.2020.09.019
- Quinquenel A, Diagnosis and Treatment of Chronic Lymphocytic Leukemia: Recommendations of the French CLL Study Group (FILO). Hemasphere. 2020 Sep 23;4(5):e473
- Camille Debord Flow cytometry in the diagnosis of mature B-cell ymphoproliferative disorders Lab Hematol 2020 Jun:42 Suppl 1:113-120
- E Campo. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood 2022 Sep 15;140(11):1229-1253
- R. Alaggio. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022 [ul;36(7):1720-1748
- E. Maitre Monoclonal B-cell lymphocytosis. Best Pract Res Clin Haematol2019 Sep;32(3):229-238
- Hoffmann J, Determination of CD43 and CD200 surface expression improves accuracy of B-cell lymphoma immunophenotyping. Cytometry. 2020;98:476–482.
- A. Bazinet A 10-color flow cytometry panel for diagnosis and minimal residual disease in chronic lymphocytic leukemia LEUKEMIA & LYMPHOMA2021, VOL. 62, NO. 10, 2352–2359
- Y Yao. The global burden and attributable risk factors of chronic lymphocytic leukemia in 204 countries and territories from 1990 to 2019: analysis based on the global burden of disease study 2019. Biomed Eng Online 2022 Jan 11;21(1):4
- N Chiorazzi Chronic Lymphocytic Leukemia Cold Spring Harb Perspect Med. 2021 Feb 1;11(2):a035220
- SD Jalal The contribution of CD200 to the diagnostic accuracy of Matutes score in the diagnosis of chronic lymphocytic leukemia in limited resources laboratories PLoS One. 2021 Feb 19;16(2):e0247491
- K Al-Zubaidi The Use of CD200 in the Differential Diagnosis of B-Cell Lymphoproliferative Disorders Br J Biomed Sci 80:11573.
- UpToDate Clinical features and diagnosis of CLL/SLL 15/01/2024
- UpToDate Pathobiology of CLL 15/01/2024
- Bieging, K., Mello, S. & Attardi, L. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14, 359–370 (2014)
- Gaidano G, The mutational landscape of chronic lymphocytic leukemia and its impact on prognosis and treatment. Hematology Am Soc Hematol Educ Program. 2017 Dec 8;2017(1):329-337.

CLL according to ChatGPT

1. Clinical Presentation

- 1. Often asymptomatic initially.
- 2. Symptoms: fatigue, enlarged lymph nodes, weight loss.

2. Diagnostic Tests

- CBC with elevated lymphocytes.
- 2. Peripheral Blood Smear: small mature lymphocytes.
- 3. Flow Cytometry: CD5, CD23, CD19 immunophenotyping.

3. Confirmation and Staging

- 1. Bone Marrow Aspiration/Biopsy for confirmation.
- 2. Rai/Binet Staging Systems for classification.

4. Cytogenetic and Molecular Testing

- 1. FISH for chromosomal abnormalities.
- 2. PCR for mutations (e.g., TP53, NOTCH1) and IGHV status.

5. Imaging Studies

- 1. CT/MRI for lymph node and organ assessment.
- PET scans for additional information.

6.Prognostic Factors

- 1. IGHV mutation, ZAP-70, CD38 expression.
- 2. Cytogenetic abnormalities, serum beta-2 microglobulin.

7. Treatment Approaches

- Watchful waiting for early-stage.
- 2. Chemotherapy (fludarabine, cyclophosphamide, rituximab) for symptoms.
- 3. Emerging therapies (ibrutinib, venetoclax) and immunotherapy

Ziekenhuis aan de Stroom [ZAS] is het netwerk van ZNA en GZA Ziekenhuizen

