IgH hypermutation analysis

Dr. Sci. Sabine Franke

9/2/2024

Molecular Biology and Cytometry Course

Why investigate the lg gene

hypermutation status?

The somatic hypermutation status of the immunoglobulin heavy variable (IGHV) gene is a biomarker for assessing the prognosis of patients with chronic lymphocytic leukemia (CLL) and predictor of responses to therapy.

- This biomarker remains stable over time
- ► This biomarker should be assessed prior to treatment in all patients with CLL

The ComPerMed recommends (1/2024) to test for I GHV status in all patients with active or advanced disease without del(17p)/ TP53 mutation and in need for therapy.

Removed: Mutational status IGHV Only reimbursed for patients younger than 65y

Ig gene structure

Somatic hypermutation takes place in the V region of both H and L chain genes, introducing a million times point mutations. This process followed by selection leads to generation of high-affinity antibodies.

IGHV mutation status

CLL arises from relatively less differentiated B cells with unmutated heavy chain genes and has a poor prognosis. Patients with unmutated IgVH genes have not generated IgV gene mutations.

When CLL evolves from more differentiated B lymphocytes with somatically mutated heavy chain genes it has a good prognosis.

Compare patient's sequence with consensus germline sequence

Homology <u>></u> 98% = unmutated Homology <98% = mutated

From Immunity: The Immune Response in Infectious and Inflammatory Disease

by DeFranco, Locksley and Robertson

Gene rearrangements of the antigen receptor genes occur during the lymphoid proliferation

Patients with unmutated IGVH genes have not generated IgV gene mutations.

Recommondations

The presence of mutated IGHV genes, with additional prognostic factors (favorable cytogenetics), characterizes a CLL patient subgroup with excellent outcome.

The BHS guidelines recommend chemoimmunotherapy in patients without del(17p)/ TP53 mutation with mutated IGVH.5Techniquenext-generation.

Technique: next generation sequencing (NGS), Sanger sequencing

iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL

Clinical Trials & Observations

Michael Hallek, Bruce D. Cheson, Daniel Catovsky, Federico Caligaris-Cappio, Guillermo Dighiero, Hartmut Döhner, Peter Hillmen, Michael Keating, Emili Montserrat, Nicholas Chiorazzi, Stephan Stilgenbauer, Kanti R. Rai, John C. Byrd, Barbara Eichhorst, Susan O'Brien, Tadeusz Robak, John F. Seymour, Thomas J. Kipps

Immunoglobulin Gene Sequence Analysis in Chronic Lymphocytic Leukemia: The 2022 Update of the Recommendations by ERIC, the European Research Initiative on CLL (*Agathangelidis*, Leukemia 2022)

https://www.compermed.be/fr/workflows/ch ronic-lymphocytic-leukemia-cll

ERIC certificate

IG CERTIFIED CENTRES BELGIUM

Brugge, AZ Sint-Jan Brugge (February 2020 / July 2023) Brussels, Erasme Hospital (June 2017) Brussels, Universitair Ziekenhuis Brussel (December 2018) Liege, CHU Liège (September 2016 / January 2021) Leuven, UZ Leuven (June 2017)

Technics

Heteroduplex analysis:

<u>Advantage</u>: - unlabeled products direct sequencing

<u>Disadvantage</u>:

- lower detection limit

GeneScan fragment analysis:

Advantage:

- Optimal visualization
- Cost

Disadvantage:

- Monoallelic with background/biallelic: no direct sequencing: demands gel excision + elution
- Limited sensitivity

NGS (next generation sequencing)

Advantage:

- Sensitive (low infiltration)
- Acurate (ERIC other technic 3-4% no interpretation)
- Analysis of monoallelic with background/biallelic (pas gel)
- More detailed insight into the existence of minor related clonotypes or unrelated clonotypes
- Combine with other clonality assays in one NGS workflow <u>Disadvantage</u>:
- Expensive
- Equipment

Somatic Hypermutation

Invivoscribe: GeneScan fragment analysis Biomed

Invivoscribe: LymphoTrack Dx Assay Kit A MiSeq IGHV leader (FR1, FR2, FR3, kappa, TRG, TRB) + LymphoTrack software IVS (based on IgBlast database)

ThermoFisher: Oncomine IGHV Leader-J Panel, ...

Euroclonality: NGS IG/TR assays

.

Think also about IVDR

Type of nucleid acid

gDNA:

better for transport use archival material but: non-productive rearrangement can also be amplified

cDNA:

identifies mostly only functional productive rearrangement but reverse transcription step necessary

PCR primers

IGHV leader:

accurate SHM level based on whole IGHV gene but lower detection rate

IGHV FR1:

higher detection rate widely used in clonality testing but lack of 5'V (estimation of SHM level)

Primer sets: IGHV leader primers IGHV FR1 primers: FR1 consensus – JH FR1 multiplex –JH (BIOMED2) IGHV FR2 primers: when leader or FR1 are negative ->NO IGHV FR3 primers: short IGHV sequences -> NO

Sanger Sequencing

Direct, both strands Sequencing of both strands is mandatory for the generation of a single, high quality IGH gene rearrangement sequence!

NGS Lymphotrack workflow

DNA

Amplification

Purification PCR products

Library quantification

Run prep

FASTQ files

Analysis

Clone identification

Adapted from M.E. Arcile et al. The Journal of Molecular Diagnostics

NGS Lymphotrack software analysis

Fastq_read_summary:

- Contains list with 200 most important unique sequences identified
- The size
- The % of actual total reads
- The percentage of cumulative total reads
- To what extent the reading covers the identified V gene (%), targeted by the primers
- The mutation rate of the partial V gene (%)
- Whether the rearrangement is located inside the frame
- Whether the rearrangement contain a termination codon
- The software also creates a PDF report file, this file includes the top 10 merged sequence reads

LymphoTrack Dx Report for assay IGH_FR1

Sample name: S19-14-220317-0118_S19_L001_001_combined

Total Read Count: 187450

IndexQ30: 87.12

Caution: Do not edit fields and save.

Mutation No Stop Merge count % total Cumulativ rate to In-frame **V**-CDR3 Seq Rank Sequence Length V-gene J-gene codon partial Vreads e % (Y/N)coverage (Y/N) gene (%) GCCTCTGGATTCA 275 IGHV3-IGHJ4 02 31.89 Y Υ 97,80 59786 31.89 3.52 1 GCGGCGAGTTTG 23 04 2 38214 IGHV3-IGHJ4 02 20,39 52,28 3,52 Υ Y 97,80 GCGGCGAGTTTG(23 04 3 GCCTCTGGATTCA 275 IGHV3-IGHJ4 02 4.34 56.62 2.20 Y Υ 97,80 8142 GCGGCGAGTTTG(23 04 IGHJ5 02 56,68 0.06 Ν Ν 4 112 IGHV3-0.00 99,11 not found 13 01 IGHJ4 02 Υ Y 5 56,74 99,56 GCCTCTGGATTCA 260 105 IGHV3-0.06 0.00 not found 9 01 6 IGHJ4 02 Υ Υ 99,55 GCCTCTGGATTCA 266 99 0.05 56.79 IGHV3-0.00 not found 13 01 7 IGHJ5 02 0.05 56,85 GCCTCTGGATTCA 261 99 IGHV3-0.00 n/a Ν 98,68 not found 23 04 GCCTCTGGATTCA 273 IGHJ4 02 0.05 56.90 8 96 IGHV3-0.00 Ν Ν 96,43 not found 13 01 56,95 Υ 9 95 IGHV3-IGHJ6 02 Υ 0.05 0.00 98,68 not found 21 02 IGHJ6 02 0.05 57.00 91,52 10 93 IGHV3-0.00 n/a Ν not found 13 01

Top 10 Merged Read Summary

Table of results

N°		reads total	Rank	Sequence	Length	Raw count	V-gene	J-gene	% total reads	Mut rate partial V- gene (%)	In-frame	No Stop codon	V- coverage
IGH POS		430983	1	GGTCTTCTGCTTGC	490	11303	GHV1-46_03	IGHJ4_02	2,62	0,00	Y	Y	100,00
			2	GGTCTTCTGCTTGC	490	384	GHV1-46_0	IGHJ4_02	0,09	0,34	Y	Y	100,00
			3	GGTCTTCTGCTTGC	490	281	GHV1-46_03	IGHJ4_02	0,07	0,00	Y	Y	100,00
			4	GGTCTTCTGCTTGC	490	276	GHV1-46_03	IGHJ4_02	0,06	0,34	Y	Y	100,00
NGS NEG		394294	1	GATCCTCTTTTGG	333	215	IGHV1-3_02	IGHJ6_02	0,05	1,35	n/a	N	50,34
			2	CTCGCCCTCCTCCT	342	215	GHV5-51_02	IGHJ4_02	0,05	0,34	N	N	32,43
			3	CTCGCCCTCCTCCT	321	187	(GHV5-51_0)	IGHJ6_03	0,05	2,03	Y	Y	25,00
			4	CTCGCCCTCCTCCT	342	184	GHV5-51_02	IGHJ4_02	0,05	0,34	N	N	32,43
SHM POS		573581	1	TTCTCGTGGTGGCA	455	35537	GHV4-59_08	IGHJ4_02	6,2	11,26	Y	Y	98,63
			2	TTCTCGTGGTGGCA	455	485	GHV4-59_08	IGHJ4_02	0,08	11,60	Y	Y	98,63
			3	TCTCGTGGTGGCAC	454	392	GHV4-59_08	IGHJ4_02	0,07	11,26	Y	Y	98,63
			4	TTCTCGTGGTGGCA	455	365	GHV4-59_08	IGHJ4_02	0,06	11,26	Y	Y	98,63
										×	-		
220121-0	061	766237	1	GGTTTTCCTTGTTG	467	25773	GHV3-21_02	IGHJ6_02	3,36	3,04	Y	Y	98,99
			2	GGTTTTCCTTGTTG	467	15793	GHV3-21_02	IGHJ6_02	2,06	2,70	Y	Y	98,99
			3	GGTTTTCCTTGTTG	467	15375	GHV3-21_02	IGHJ6_02	2,01	3,04	Y	Y	98,99
			4	TCCTGCTGGTGGCA	484	14630	GHV4-31_00	IGHJ6_02	1,91	2,76	n/a	N	79,66

Clones with abundance < 2% of total reads = background

2.

N°	reads total	Rank	Sequence	Length	Raw count	V-gene	J-gene	% total reads	Mut rate partial V- gene (%)	In-frame	No Stop codon	V- coverage
IGH POS	430983	1	GGTCTTCTGCTTGC	490	11303	GHV1-46_03	IGHJ4_02	2,62	0,00	Y	Y	100,00
		2	GGTCTTCTGCTTGC	490	384	GHV1-46_03	IGHJ4_02	0,09	0,34	Y	Y	100,00
		3	GGTCTTCTGCTTGC	490	281	GHV1-46_03	IGHJ4_02	0,07	0,00	Y	Y	100,00
		4	GGTCTTCTGCTTGC	490	276	GHV1-46_03	IGHJ4_02	0,06	0,34	Y	Y	100,00
NGS NEG	394294	1	GATCCTCTTTTGG	333	215	IGHV1-3 02	IGH16 02	0.05	1 35	n/a	N	50.34
	551251	2	CTCGCCCTCCTCCT	342	215	GHV5-51 02	IGH14 02	0.05	0.34	N	N	32 43
the second s	-	2	CTCGCCCTCCTCCT	321	187	GHV5-51 02	IGH16 03	0.05	2.03	Y	Y	25.00
						Contro Da_or	101100_00	0/00	2,00			25,00
		4	CTCGCCCTCCTCCT	342	184	GHV5-51_02	IGHJ4_02	0,05	0,34	N	N	32,43
SHM POS	573581	3 4 1	стссссстсстсст	342 455	184 35537	IGHV5-51_02	IGHJ4_02	0,05 6,2	0,34	N Y	N Y	32,43 98,63
SHM POS	573581	3 4 1 2	TTCTCGTGGTGGCA	342 455 455	184 35537 485	IGHV5-51_02 IGHV4-59_08 IGHV4-59_08	IGHJ4_02 IGHJ4_02 IGHJ4_02	0,05 6,2 0,08	0,34 11,26 11,60	N Y Y	N Y Y	32,43 98,63 98,63
SHM POS	573581	1 2 3	TTCTCGTGGTGGCAC TTCTCGTGGTGGCAC	342 455 455 454	184 35537 485 392	IGHV5-51_02 IGHV4-59_08 IGHV4-59_08 IGHV4-59_08	IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02	0,05 6,2 0,08 0,07	0,34 11,26 11,60 11,26	N Y Y Y	N Y Y Y	32,43 98,63 98,63 98,63
SHM POS	573581	3 4 1 2 3 4	TTCTCGTGGTGGCA TTCTCGTGGTGGCA TTCTCGTGGTGGCA TTCTCGTGGTGGCA	342 455 455 454 455	184 35537 485 392 365	GHV5-51_02 GHV4-59_08 GHV4-59_08 GHV4-59_08 GHV4-59_08	IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02	0,05 6,2 0,08 0,07 0,06	0,34 11,26 11,60 11,26 11,26	N Y Y Y	N Y Y Y Y	32,43 98,63 98,63 98,63 98,63
SHM POS	573581	1 2 3 4	TTCTCGTGGTGGCA TTCTCGTGGTGGCA TTCTCGTGGTGGCAC TTCTCGTGGTGGCAC	342 455 455 454 455	184 35537 485 392 365	GHV5-51_02 GHV4-59_08 GHV4-59_08 GHV4-59_08 GHV4-59_08	IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02	0,05 6,2 0,08 0,07 0,06	0,34 11,26 11,60 11,26 11,26	N Y Y Y Y	N Y Y Y Y	32,43 98,63 98,63 98,63 98,63
SHM POS	573581	1 2 3 4	TTCTCGTGGTGGCA TTCTCGTGGTGGCA TTCTCGTGGTGGCAC TTCTCGTGGTGGCAC	342 455 455 454 455 467	184 35537 485 392 365 25773	GHV5-51_02 GHV4-59_08 GHV4-59_08 GHV4-59_08 GHV4-59_08 GHV3-21_02	IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ6_02	0,05 6,2 0,08 0,07 0,06	0,34 11,26 11,60 11,26 11,26 3,04	N Y Y Y Y	N Y Y Y Y	32,43 98,63 98,63 98,63 98,63 98,63
SHM POS	573581	1 2 3 4	TTCTCGTGGTGGCA TTCTCGTGGTGGCA TTCTCGTGGTGGCA TTCTCGTGGTGGCA TTCTCGTGGTGGCA GGTTTTCCTTGTTG	342 455 455 454 455 467 467	184 35537 485 392 365 25773 15793	GHV5-51_02 GHV4-59_08 GHV4-59_08 GHV4-59_08 GHV4-59_08 GHV3-21_02 GHV3-21_02	IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ6_02 IGHJ6_02	0,05 6,2 0,08 0,07 0,06 3,36 2,06	0,34 11,26 11,60 11,26 11,26 3,04 2,70	N Y Y Y Y	N Y Y Y Y	32,43 98,63 98,63 98,63 98,63 98,63 98,63
SHM POS	573581	1 2 3 4 1 2 3	CTCGCCCTCCTCCT TTCTCGTGGTGGCA TTCTCGTGGTGGCA TCTCGTGGTGGCA TTCTCGTGGTGGCA GGTTTCCTTGTTG GGTTTCCTTGTTG GGTTTTCCTTGTTG	342 455 455 454 455 467 467 467	184 35537 485 392 365 25773 15793 15375	GHV5-51_02 GHV4-59_08 GHV4-59_08 GHV4-59_08 GHV4-59_08 GHV3-21_02 GHV3-21_02 GHV3-21_02	IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ4_02 IGHJ6_02 IGHJ6_02 IGHJ6_02	0,05 6,2 0,08 0,07 0,06 3,36 2,06 2,01	0,34 11,26 11,60 11,26 11,26 3,04 2,70 3,04	N Y Y Y Y	N Y Y Y Y	32,43 98,63 98,63 98,63 98,63 98,63 98,63 98,99 98,99 98,99

Lymphotrack Invovoscribe

http://imgt.cines.fr/IMGT_vquest/vquest

www.ncbi.nlm.nih.gov/igblast/

Somatic hypermutations

Mostly point mutations

Transitions (e;g; C>T, G>A) are more frequent than transversions (e.g. C>A or G, G>C or T)

IGHV repertoire in CLL

(Ghia, Blood 2004)

Sample Total count	161124-0058 391.356										
Rank	Sequence	Length	Merge count	V-gene 🔳	J-gene	% total reads	Cumulative %	Mutation rate to partial V-gene (%)	In-frame (Y/N)	No Stop codon (Y/N)	V-coverage
1	CTTCTGGATACAC	283	277774	IGHV1-8_01	IGHJ5_02	709773199.00	709773199,00	5,75	Y.	Y	98,67
2	CTTCTGGAGGCAC	337	694	IGHV1-69_13	IGH36_02	0,1773321	711546520,00	4,87	Y	Y	99,56
3	GCCTCTGGATTCA	310	382	IGHV3-13_01	IGH36_02	0,0976093	712522614,00	0,00	N	N	100,00
4	GCCTCTGGATTCA	296	376	IGHV3-15_05	IGH34_02	0,0960762	713483376,00	7,73	Y	Y	98,71
5	CACTGTCTCTGGT	297	290	IGHV4-39_05	IGH36_02	0,0741013	714224389,00	7,86	Y	Y	100,00
6	GCCTCTTGATTCA	199	259	IGHV3-13_01	IGH36_02	0,0661802	714886191,00	2,68	n/a	N	48,21
7	CTTCCGGATACAC	267	245	IGHV1-45_02	IGHJ4_02	0,0626028	715512219,00	5,31	n/a	N	92,92
8	GCCTCTGGATTCA	260	214	IGHV3-15_07	IGH05_02	0,0546817	716059036,00	7,30	Y	Y	100,00
9	GCCTCTGGATTCA	299	206	IGHV3-23_04	IGH)6_02	0,0526375	716585411,00	0,00	Y.	N	100,00
10	GCCTCTGGATTCA	278	202	IGHV3-30-3_01	IGHJ4_02	0,0516154	717101565,00	0,00	Y	Y	100,00

Rank Sequence Length Merge count V-gene J-gene % total reads Cumulative % Mutation rate In frame (Y/N) No stop codon V-coverage

							_		
N°	reads total	капк	Sequence	Length	Raw count	v-gene	J-gene	% total reads	Cumulative %
			CIICIGGAIACAC						
			GITCACCAATTAT						
			TGCGACAGGCCAC						
			TGGACAAGGGCTT						
			GAGTGGGTGGGAT						
			GGATGAATCCTGA						
			CAGTGGTAACACA						
			GACTATGCACAGG						
			AGGGACACCTTCA						
			AAAGCACAGCCTA						
			CATGGAGCTGAAC						
			AGCCTGAGATTTG						
			AGGACACGGCCGT						
			GIALIACIGIGCG						
			AGACGATTCTTCC						
			AGGGAACTGGTTC						
			GACCCCTGGGGCC						
58	391356	1	AGGGAACCCT	283	176424	IGHV1-8_01	IGHJ5_02	450801827,00	450801827,00

Mut rate partial V- gene (%)	In-frame	No Stop codon	V-coverage	Résulta t FRI	Taille frag FRI	% HMIGH	V-gene HMIGH	In Frame HMIGH	NO Stop Codon HMIGH
5,75	Y	Y	98,67	Clonal	332 bp	95,49	IGHV1-8*01f	+	+

Sequence interpretation

Sequence alignment IMGT/V-QUEST (https://www.imgt.org/IMGT_vquest/input) Adjustable parameter: search for insertions/deletions.

V, D, J gene

Functionality: Productive or unproductive

Identity: Gene identified

Homology: Percentage. (<98% HMS mutated; <u>></u>98% unmutated)

Check In frame/ no stop codon, pseudogenes, must include Cys 104 and Trp 118

www.imgt.org/IMGT_vquest/input

Search for insertions and deletions in V-REGION YES (low V-region identity)

Different sequences can be entered at the same time

Sequence: 1 2023

Analysed sequence length: 490. Sequence analysis category: 2 (indel search & correction). Sequence compared with the Homo sapiens (human) IG set from the IMGT reference directory (set: F+ORF+ in-frame P)

>2	02	23	}																																																
SE.	to	t	t	C	t	g	ct	1	t	30	1	1	3	ţC	1	1	ţt		1	Į(Ì	(: 0	8	g	g	t	а	a	a	3	38	g C	C	a	a	ct	g	g	t	t	20		g	g	g	C	tg	38	g	ga
ag	88	g a	t	t	t	t	t	1	- 0	1	36	g t	1	t		E	32	1	1	32	1	t	E	ţt	: 0	a	t	t	C	t	ct	ce	C	t	g	t	gt	10	C	t	C 1	ta		1	c	a	g	gt	e	c	to
ac	to	: 0	1	III.	-	5	19	5		1	5	1		1	1				-		3	t			-	E	-	1	R	8	29	5	-	đ	3	S	38	-		0	-	5		19	; :	-	τ	2.6		t	g:
₹ 🔮	1		t	5	-	1	2			1		1		1			-		1	1		R	-		-	1	t	5	a	5	28		1	t	3		23	t	-	t	2	2 8		t	na	5	5	tş	53	5	83
5₽.	E		1	2		5	23			1 3		1		1	1	ł	-		-	1	-	9			-	-	5	11	a	ţ	33		T	8	a	-	C.C	1	a	S	-	59		5	2	t	a	50		1	88
SC	Id		5	5	3	2	-			1		t					-		1		-	4	-	ł.	¢		1	2	a		23		1	8	-	S	28		=	-	2		1	ē	-	5	ē	20		C	8
te	- 0	1	ē	-	2	5	-	5	5	1		15			19	5	ę	2	-	ŝ	-	-	1		-	Ę	ē	2	my	a	23		- 5	-		0	⊇t	-	-	ē.	-	t a	2	t	R	t	5	ct		S	ē į
et.	1	4	ē	5	3	5	21	ł		1	1	1		-	1		1			1	-	1	1	1		t	3	1	-	ť		1	S	0	а	C	23		1	t		54		t.	3	C	t	29		15	C :
82	29		ē	5	-	-	1																																												

► V, D, J gene ► Productive ► % of homology ► In frame/ no stop codon Pseudogenes

insertions/deletions Cys 104 and Trp 118

Result summary: 2023	Productive IGH rearranged sequence (no stop code	on and in-frame	junction)
V-GENE and allele	Homsap IGHV1-46*01 F. or Homsap IGHV1-46*03 F	score = 1440	identity = 00.00% 288/288 nt)
J-GENE and allele	Homsap IGHJ4*02 F	score = 155	identity = 100.00% (31/31 nt)
D-GENE and allele by IMGT/JunctionAnalysis	Homsap IGHD2-2*01 F	D-REGION is	in reading frame 2
FR-IMGT lengths, CDR-IMGT lengths and AA JUNCTION	[25.17.38.5]	[8.8.20]	CARDLTGCISTSCYPPNYFDYW
JUNCTION length (in nt) and decryption	66 nt = (5)-6{15}-6(22)-3{7}0(17)	(<u>3'V)3'{N1}5'(I</u>	<u>D)3'{N2}5'(5'J</u>)

J-REGION partial 3' missing nt nb: 16

🔲 🔤 myCHU 🗴 🔀 Zimbra: Envoyé (15) 🗙 🎐 IMGT/V-QUEST

 \leftarrow \rightarrow \bigcirc https://www.imgt.org/IMGT_vquest/analysis;jsessionid=C30D06C8677E252FE3C8ACC1AD3AED4C

G Conferences & Eve...

A. Detailed results for the IMGT/V-QUEST analysed sequences

x +

Number of analysed sequences: 1

1. <u>2022</u>

This release of IMGT/V-QUEST uses IMGT/JunctionAnalysis for the analysis of the JUNCTION

B Hyphens (-) show nucleotide identity, dots (.) represent gaps

Sequence: 1 2022

Analysed sequence length: 467.

Sequence analysis category: 2 (indel search & correction). Sequence compared with the <u>Homo sapiens (human) IG set</u> from the <u>IMGT reference directory</u> (set: F+ORF+ in-frame P)

>2022

protect = p

	Nucleotide deletions have been detected (chown by dots in the alignments):										
Result summary: 2022	localization	nb of deleted nt	causing frameshift	from V-REGION	l codon	from nt position in user submitted sequence					
	CDR2-IMGT	3	no	57		292					
(Check also your sequence with g	productive IG	ST results after Trearranged seq	uence (no stop codo	a) gap(s): In a d in-frame ju eventually ident	inction) ify out-o	f-frame pseudogenes)					
V-GENE and allele	Homsap IGHV	3-21*01 F, or Hom	isap IGHV3-21*02 F	score = 1371	identi	= 97.89% (279/2)5 nt) [97.54% (278/285 nt)]					
J-GENE and allele	Homsap IGHJ6	<u>5*02 F</u>		score = 144	identity	r = 88.89% (32/36 nt)					
D-GENE and allele by IMGT/JunctionAnalysis	Homsap IGHD	<u>3-10*01 F</u>		D-REGION is	in readin	ig frame 2					
FR-IMGT lengths, CDR-IMGT lengths and AA JUNCTION	[25.17.38.5]			[8.7.9]	CARD	SNGMDVW					
JUNCTION length (in nt) and decryption	33 nt = (11)0{0	}-24(5)-2{0}-15(17)	(<u>3'V)3'{N1}5'(E</u>) <u>3'{N2}5</u>	<u>7(5'J)</u>					

Nucleotide deletions have been de

Potentially productive IGH rearrang Check BLAST

J-REGION partial 3' missing nt nb: 15

1. Alignment for V-GENE and allele identification

Closest V-REGIONs (evaluated from the V-REGION first nucleotide to the 2nd-CYS codon)

IMGT/V-QUEST 'Detailed view': Result summary table

http://imgt.cines.fr

equence number 2: seq_2			
quence compared with the <u>human IG set</u> from the <u>IMGT reference</u>	directory		
eq_2 ggtgcagctggtggagtctgggggaggcttggtaaagccgggggggtccct; ccgtgcagcctctggattcaccttcagtgactactacatgaactggtcccg	gagactc ccaggct		
agggaaggggctggagtggggctalcalcaltactagtagtagtactatata ctctgtgaagggccgattcaccatctccagagacaacgccaagaactaact	gtatetg taaggte ecetggg	rearranged seque	nce (stop codons,out-of-frame junction)
agggaaggggttggagtggggttattata ctetgtgaagggcegattcaccatetecagagacaacgceaggactaact aatgaagggeeggattggggacacggetgtgeattactgttegagaga gtaggtattacgatttttggagtggttattttacgaagaaactggttegae cagggaaceetggteacegteteeteag esult summary:	Unproductive IGH	rearranged seque	nce (stop codons,out-of-frame junction) identity = 96.14% (274/285 nt)
agggaaggggetgagggggttatteaceattatata ctetgtgaaggggeegatteaceateteeagagaeaecgeeagaeataet aatgaagageetgagagttgggggaeaeggetgggeattaetgttegagaga gtaggtattaegatttttggagtggttattttaegaagaaaetggttegae cagggaaeeetggteaeegteteeteag esult summary:	gtatctg taaggtc ccctggg IGHV3-h*01(P) IGHJ5*02	rearranged seque score = 1321 score = 237	identity = 96.14% (274/285 nt)
agggaaggggetggagetggggeteateeateeateeatagtagtagtagtateataata etetgtggaagggeegatteaceateeeagagaaaeggeeaagaetaaet aatgaagageetgagagttgagggaeaeggetgtgeeataetgttegagaga gtaggtattaegatttttggagtggttattttaegaagaaaetggttegae eagggaaeeetggteaeegteteeteag esult summary: -GENE and allele -GENE and allele -GENE and allele by IMGT/JunctionAnalysis	Unproductive IGH IGHV3-h*01(P) IGHD3-3*01	rearranged seque score = 1321 score = 237 D-REGION is in	nce (stop codons,out-of-frame junction identity = 96.14% (274/285 nt) identity = 96.08% (49/51 nt) reading frame 3

IMGT/V-QUEST - Microsoft Internet Explorer				
Αρχείο Επεξεργασία Προβολή Αγαπημένα Εργαλεία Βοήθι	εia			an an
🚱 Πίσω 🔹 🕥 - 🔛 🛃 🏠 🔎 Αναζήτηση 🐇	ζΑγαπημένα 🌒	Méoa 😨 🔗		
Διεύθυνση 💰 http://imgt.cines.fr/IMGT_vquest/vquest			👻 🎅 Μετάβαση	Συνδέσεις »
>N4431 gaggtgcagctggtggagtctggggggggggttggtccagcctgggggg tcctgttcagcctctgggttcaccttcagtggctctgctatgcactgg tccgggaaagggctggagtgggttggccgtattagaagcaaagctaat gcatatgctgcgtcggtgaaaggcaggttcaccatctccagagatgat gcgtatctgcaaatgaacagcctgaaaaccgaggacacggcgtataa caggatattgcagtagtaccagctgctatagtgggggggtctgttgac ggaac	gtccctgaaactc ggtccgccaggct agttacgcgaca ;tcaaagaacacg utactgggacata ;tactggggccag			
Result summary:	Unproductive	IGH rearranged s	sequence (stop codons) (a)	
V-GENE and allele	IGHV3- 73*01	score = 1429	identity = 98,30% (289/294 nt)	
J-GENE and allele	IGHJ4*02	score = 95	identity = 82,14% (23/28 nt)	
D-GENE and allele by IMGT/JunctionAnalysis	IGHD2-2*02	D-REGION is in	reading frame 3	
[CDR1-IMGT.CDR2-IMGT.CDR3-IMGT] lengths and AA JUNCTION	[8.10.19]	wDIQDIAVVPAA identified)	IVGGSVDYW (2nd-CYS 104 not	>
(a) 2nd-CYS 104 is not identified in the submitted sequence. T 'Search for insertions and deletions' in 'Advanced parameters'	This may indicate (at the bottom of th	ootential nucleotid ie Search page	e insertion(s) and/or deletion(s):	try
http://imgt.cines.fr/IMGT_vquest/vquest#1_N4431_ali			Internet	

Single unproductive rearrangement

• Out of frame - deletions/insertions

tgg

ttt

gac tac

15

1,968.14 6.59

aga gat ggg ggg

Functionality

IGHV-IGHD-IGHJ gene rearrangements can be rendered unproductive if they

- carry pseudogenes
- out-of-frame VDJ junctions
- stop codons
- indels leading to frameshifts within the coding part of the sequence

Single unproductive rearrangement

CLL cells are mature B cells that should express functional IG molecules on their surface.

Identification of a single unproductive IGH rearrangement is rare (<0.1% of all CLL)

Detect the productive IGHV-IGHD-IGHJ gene rearrangement (on the other allele of the IGH locus).

Use an alternative set of primers Use cDNA when gDNA was used Repeat with a new sample

Unproductive rearrangement: NO clinical association possible

Double rearrangement 10.5%

One productive and one nonproductive (90%) Mutational status defined by the productive rearrangement, irrespective of the IGHV mutation status of the unproductive rearrangement.

Double productive

Concordant IGHV mutation status

Consider as mutated or unmutated, according to the IGHV mutation status.

Check immunophenotype for the presence of 2 clonal populations.

Discordant IGHV mutation status

Recommend to the physician that it is safer to consider as U-CLL; close follow-up.

Double rearrangement

Multiple (>2) productive rearrangements Perform NGS to assess the relative frequency of each clonotype and consider the predominant clonotype, if it is clearly identified.

CLL cases with two B cell clones (a CLL and a non-CLL) have been reported to display earlier need for treatment against cases with monoclonal CLL

Sequence analysis

IMGT/V-QUEST (https://www.imgt.org/IMGT_vquest/input)

ARResT/AssignSubsets (http://bat.infspire.org/arrest/assignsubsets/)

Assignment to stereotyped subsets #2 and #8

Homology + interpretation

Percentage identity

Count from IMGT codon 1 – 104 (automatically by IMGT/V-QUEST)

Codon 105-107 eventuel mutations have minor effect

Cut-off 98% (-> borderline 97-99%)

CLL cases with homology close to cut-off of 98% have varying clinical outcome

Result by using FR1 primers -> reanalyse with leader primers

Stereotyped B cell receptor immunoglobulin (BcR IG) are classified into subsets.

Subset #2 patients experience a particularly aggressive disease course, irrespective of their IGHV gene mutation status .

Subset #2 was found to be an independent prognostic marker for shorter TTFT, time-to-next-treatment (TTNT), and PFS, irrespective of the SHM status.

Subset #8 associated with aggressive disease (risk of transformation to Richter).

Homologie with IGHV3-21 (but also all other rearrangements) analyse by http://bat.infspire.org/arrest/assignsubsets/.

	ARResT/AssignSubsets
	<u>cite usi</u>
assigning new members the 19 major s	s to existing subsets of stereotyped antigen receptor sequences, currently applicable subsets of stereotyped B-cell receptors in chronic lymphocytic leukemia (CLL)
26.02.	.17 powered by ARResT/SeqCure ; IMGT/V-QUEST ; IMGT/CLL-DB
	Tour day Dayon & Sars 14
	ARResT cite us news help contact us BAT cave
	please consider using Chome / Protos / Safet for best vewing and full functionality
our antigen receptor seg	auences
16063003682	FULL NUCLEOTIDE IG sequences - check example below, ~100kb upload limit
TATITIAGAAGGIGAAICRIGGAAAAG	STAGAGASATTIAGTGTGTGTGGGATATGAGTGAGAGAACBGTGGATGTGTGTGACAGTTTCTGACCTAT
TCTCTCIGTITGCAGGTGTCCAGTGTG	SAGGTOCASCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAG
TACATAAAGTACGCAGACTCAGTGAAS	SGGCCGATICACCATCICCAGAGACAACGCCAAGAACAACTGTATCIGCAATGAACAGCCTGAGAGAGC
	Parcourir clear browsed file
r click to load example	
FASTA	
NSCLAIMER - there is no guatantee that ARRay	TriAstignSubjets will be able to properly assign all your sequences to subjets, please bear this in mind when making decisions, especial
ISCLAMEN - there is no guatantee that ARRs	asTrAsignSubsets will be able to properly assign all your sequences to subsets, please bear this in mind when making decisions, especi ally with "bordefine"- or "tow-confidence assignments. To help us improve ARResTrAssignSubsets, please contact us
NSCLAMER - there is no guatantee that ARRa montant ones on e.g. clinical care, and expectal	asT/AssignSubsets will be able to properly assign all your sequences to subsets, please bear this in mind when making decisions, especi ally with "borderline"- or "low'-confidence assignments. To help us improve ASResTrAssignSubsets, please contact us

Bat.infspire.org/arrest/assignsubsets/

×) MGT/V-QUEST

assignsubsets/

ARResT/AssignSubsets @ the BAT 🗙

+

IGHV3-21-subset

equencies fabi	le r							
CLL#1 2.4%	CLL#4 1.0%	CLL#6 0.9%	CLL#5 0.7%	CLL#3 0.6%	CLL#8 0.5%	CLL#31 0.4%	CLL#16 0.3%	CLL#77 0.7%
CLL#28A 0.3%	CLL#201 0.3%	CLL#12 0.3%	CLL#59 0.3%	CLL#14 0.3%	CLL#648 0.3%	CLL#99 0.3%	CLL#202 0.3%	
port table								
map, if appl.]		SeqCure	sui	bset	con	fidence		score
(P)		OK	CI	1#2	ext	eme		78.91
	CLL#1 2.4% CLL#28A 0.3% port table map. if appl.]	CLL#1 CLL#4 2.4% 1.0% CLL#28A CLL#201 0.3% 0.3% port table map. if appl.]	CLL#1 CLL#4 CLL#6 2.4% 1.0% 0.9% CLL#28A CLL#201 CLL#12 0.3% 0.3% 0.3% port table SeqCure map. if appl.] SeqCure	CLL#1 CLL#4 CLL#6 CLL#5 2.4% 1.0% 0.9% 0.7% CLL#28A CLL#201 CLL#12 CLL#59 0.3% 0.3% 0.3% 0.3% port table SeqCure sul #2 OK CL	CLL#1 CLL#4 CLL#6 CLL#5 CLL#3 2.4% 1.0% 0.9% 0.7% 0.6% CLL#28A CLL#201 CLL#12 CLL#59 CLL#14 0.3% 0.3% 0.3% 0.3% 0.3% port table map. if appl.] SeqCure subset 92 OK CLL#2 CLL#2	CLL#1 CLL#4 CLL#6 CLL#5 CLL#3 CLL#3 2.4% 1.0% 0.9% 0.7% 0.6% 0.5% CLL#28A CLL#201 CLL#12 CLL#59 CLL#14 CLL#64B 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% port table map. if appl.] SeqCure subset con 92 OK C11#2 ext	CLL#1 CLL#4 CLL#6 CLL#5 CLL#3 CLL#8 CLL#31 2.4% 1.0% 0.9% 0.7% 0.6% 0.5% 0.4% CLL#28A CLL#201 CLL#12 CLL#59 CLL#14 CLL#64B CLL#99 0.3% 0.3%<	CLL#1 CLL#4 CLL#5 CLL#3 CLL#3 <th< td=""></th<>

This CLL sample displays a productive IGHV3-21 mutated rearrangement (<98% homology) with stereotyped BcR Ig with subset #2.

Amongst CLL cases expressing clonotypic BcR Ig encoded by the IGHV3-21, those belonging to subset#2 are associated with adverse prognosis, regardless of their SHM status (Baliakas et al. Blood 2015).

Clinical report

Basic data: patient data

tissue type sample arrival date reference

• Technique: direct sequencing, subcloning

gDNA or cDNA PCR primers (BIOMED2) bioinformatics tools for SHM status assessment, and stereotypy analysis.

• Results: % identity to the germline to 2 decimal points as reported by IMGT + cut-off

 IGHV/IGHD/IGHJ gene usage functionality - productive/unproductive
 ► SHM status only for productive rearrangements; if the rearrangement is unproductive, mention reasons for that (e.g., IG pseudogene, out-of-frame junction, stop codon, large indel).

- Conclusion: interpretation of data (mutated, unmutatd, borderline) clinical association: poor/good prognostic
- Subset identification/BcR IG stereotypy: For subsets with

well-established prognostic value (currently, subsets #2 and #8).

No clear interpretation possible -> prognostic implication cannot be determined

1. Example of the IG report, IG - mutated

Name of the Hospital/Lab

Determination of IGHV gene SHM status

Date of result:

22/01/2022

Date of sample collection:

09/01/2022

Patient name: ***

Diagnosis: CLL Tissue type: blood Molecule type: genomic DNA

Utilized methodology

PCR amplification of IGHV-IGHD-IGHJ gene rearrangements with leader primers. Genescan analysis Bidirectional Sanger sequencing Immunoinformatics analysis: IMGT/V-QUEST

Result: a productive IGHV3-23*01/IGHD4-17*01/IGHJ4*02 gene was detected. The rearranged IGHV gene had 96.2% nucleotide identity with the germline sequence of the IGHV3-23*01 gene.

Interpretation: following the 98% germline identity cut-off value which is used for discriminating CLL cases into the IG-mutated or IG-unmutated category, this case belongs to the IG-mutated category which is generally associated with favorable prognosis.

Determination of IGHV gene SHM status

Date of result:	05/09/2016
Date of sample collection:	12/08/2016

Patient name: ***

Diagnosis: CLL Tissue type: blood Molecule type: genomic DNA

Utilized methodology

PCR amplification of IGHV-IGHD-IGHJ gene rearangements with leader primers. Genescan analysis Bidirectional Sanger sequencing Immunoinformatics analysis: IMGT V-Quest

Result: a productive IGHV3-49*01/IGHD3-9*01/IGHJ4*02 gene was detected. The rearranged IGHV gene had 100% nucleotide identity with the germline sequence of the IGHV3-49*01 gene.

Interpretation: following the 98% germline identity cut-off value which is used for discriminating CLL cases into the IG-mutated or IG-unmutated category, this case belongs to the IG-unmutated category which is generally associated with adverse prognosis.

Determination of IGHV gene SHM status

 Date of result:
 05/09/2016

 Date of sample collection:
 12/08/2016

Patient name: ***

Diagnosis: CLL Tissue type: blood Molecule type: genomic DNA

Utilized methodology

PCR amplification of IGHV-IGHD-IGHJ gene rearangements with leader primers. Genescan analysis Bidirectional Sanger sequencing Immunoinformatics analysis: IMGT V-Quest, ARResT/AssignSubsets tool

Result: a productive IGHV3-21*01/IGHD: not determined/IGHJ6*02 gene was detected. The rearranged IGHV gene had 96.8% nucleotide identity with the germline sequence of the IGHV3-21*01 gene.

Interpretation: following the 98% germline identity cut-off value which is used for discriminating CLL cases into the IG-mutated or IG-unmutated category, this case belongs to the IG-mutated category. However, this particular rearrangement belongs to stereotyped subset #2 which is associated with adverse prognosis regardless of the somatic hypermutation status (Baliakas et al. Blood 2015).

Determination of IGHV gene SHM status

Date of result: Date of sample collection:

05/09/2016 12/08/2016

Patient name: ***

Diagnosis: CLL Tissue type: blood Molecule type: genomic DNA

Utilized methodology

PCR amplification of IGHV-IGHD-IGHJ gene reararngements with leader primers. Genescan analysis Bidirectional Sanger sequencing Immunoinformatics analysis: IMGT V-Quest

Result: a productive IGHV3-49*01/IGHD3-9*01/IGHJ4*02 gene was detected. The rearranged IGHV gene had 97.3% nucleotide identity with the germline sequence of the IGHV3-49*01 gene.

Interpretation: following the 98% germline identity cut-off value which is used for discriminating CLL cases into the IG-mutated or IG-unmutated category, this case belongs to the IG-mutated category. However, the identity percentage is close to the cut-off and, thus, the case can be considered as borderline-mutated. In such cases, caution is warranted regarding the precise prognostic implications.

Example typical case I

IGHV: 3-72 IGHD: 2-2 IGHJ: 6 Identity: **95.7%** Functionality: Productive Sterotype unassigned

IGHV mutated rearragement Mutated IGHV genes >98% identity have been associated with a good clinical outcome

Example typical case II

IGHV: 1-69 IGHD: 3-3 IGHJ: 4 Identity: **100%** Functionality: Productive Sterotype unassigned

IGHV unmutated rearragement Unmutated IGHV genes <u>>98%</u> identity have been associated with a poor clinical outcome

Example borderline

IGHV: 3-48 IGHD: 2-21 IGHJ: 3 Identity: **97.8%** Functionality: Productive Sterotype unassigned

IGHV mutated rearragement with borderline identity (close to cut-off of 98%) Caution should be taken with the interpretation of the clinical correlation

Not if FR1 primers were used!

Example special case I

IGHV: **3-21** IGHD:-IGHJ: 6 Identity: 96.7% Functionality: Productive Sterotype #2

IGHV3-21 mutated rearragement with a stereotyped CDR3 (9 codons). The presence of a mutated IGHV3-21 with stereotype #2 have been associated with a poor clinical outcome.

Example special case II (rare)

Rearrangement 1

IGHV: 1-69 IGHD: 3-16 IGHJ: 6 Identity: **99.6%** Functionality: **Productive**

Rearrangement 2

IGHV: 3-30 IGHD: 3-3 IGHJ: 4 Identity: **100%** Functionality: **Productive**

2 unmutated IGHV rearragements and would be interpretated as expressing unmutated IGHV genes. Unmutated IGHV genes (\geq 98%) are associated with a poor clinical outcome.

Example special case III (rare)

Rearrangement 1

IGHV: 1-69 IGHD: 3-3 IGHJ: 6 Identity: **99.6%** Functionality: **Productive**

Rearrangement 2 IGHV: 4-34 IGHD: 3-22 IGHJ: 4 Identity: 100% Functionality: Unproductive

Productive IGHV unmutated rearragements and an unproductive IGHV unmutated rearrangement. Altogether this has to be interpretated as a case with unmutated IGHV genes. Unmutated IGHV genes (≥98% identity) are associated with a poor clinical outcome.

Example difficult case I

Rearrangement 1

IGHV: 1-69 IGHD: 3-3 IGHJ: 6 Identity: **93.6%** Functionality: Productive

Rearrangement 2

IGHV: 4-34 IGHD: 3-22 IGHJ: 4 Identity: **100%** Functionality: Productive

A productive IGHV mutated rearragements and a productive IGHV unmutated rearrangement. It is safer to consider as U-CLL; close follow-up.

Example difficult case II

IGHV: 1-3 IGHD: 3-3 IGHJ: 6 Identity: 100% Functionality: **Unproductive**

An unproductive IGHV unmutated rearragement (\geq 98% identity). At present the clinical correlation cannot be defined.

Follow:

Immunoglobulin Gene Sequence Analysis in Chronic Lymphocytic Leukemia: The 2022 Update of the Recommendations by ERIC, the European Research Initiative on CLL (*Agathangelidis*, Leukemia 2022)

Baliakas P et al. Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood 2015; 125:856-859.

Difficult cases: ERIC helps www.ERICLL.org

www.ericll.org

- Immunoglobulin Gene Sequence Analysis in Chronic Lymphocytic Leukemia: The 2022 Update of the Recommendations by ERIC, the European Research Initiative on CLL (*Agathangelidis*, Leukemia 2022)
- Rosenquist R et al. and ERIC. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia 2017; 31(7): 1477-1481.
- Difficult cases: ERIC helps
- (<u>https://barcelo.eventsair.com/submission-of-ighv-sequences/ighv-sequences/Site/Register</u>)
 Become an ERIC Member

Joining ERIC could not be easier: It is quick, simple and free!

- QC
- Workshops

