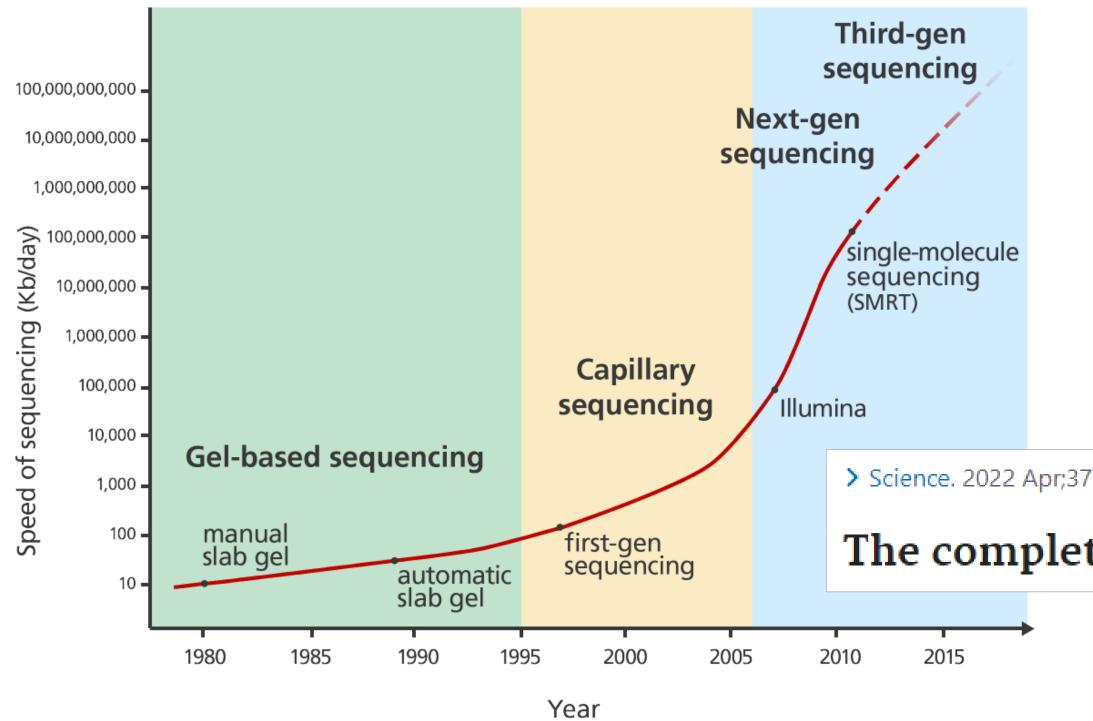


4.4 Basic: Bioinformatics workshop on sequencing


introducing data formats, analysis and visualization

Paco Hulpiau & Cedric Hermans

https://www.bio-informatica.be/workshops/

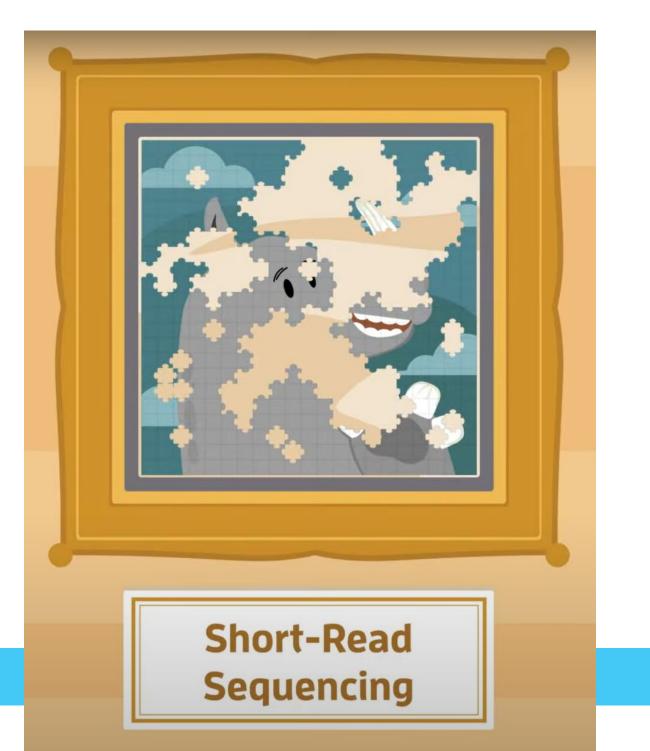
Sequencing technology

Source: Genome Research Limited

Human Genome Project Started in 1990 ~ 92% complete in 2003

> Science. 2022 Apr;376(6588):44-53. doi: 10.1126/science.abj6987. Epub 2022 Mar 31.

The complete sequence of a human genome



Sequencing technology

Bacteria ~ DNA code 5 000 000 letters

Short reads:

puzzle = 50 000 reads of 100 bases

Long reads:

puzzle = 500 reads of 10000 bases

Source: PacBio HiFi sequencing

Sequencing technology

<u>short read</u> sequencing next-generation of NGS Illumina

long read sequencing

Oxford Nanopore

Technologies

- Gene Expression Omnibus (GEO) = international public repository for **high-throughput** microarray and next-generation sequencing **functional genomic data sets** submitted by researchers
- Supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable https://www.ncbi.nlm.nih.gov/geo/

Example: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150727

Series GSE1507	27	Query Data
Status	Public on Jul 15, 2020	
Title	Targeted sequencing of localized and met carcinoma	astatic cutan
Organism	Homo sapiens	
Experiment type	Genome variation profiling by high throughpu	it sequencing
Summary	We report sequencing of <u>10 localized and 10</u> cell carcinomas from human subjects. Sequ targeted gene mutation panel consisting of 70	encing was d
Overall design	Case-control study.	
Contributor(s)	Wysong A, Lobl M	
Citation(s)	Lobl MB, Hass B, Clarey D, Higgins S et al. Ne identifies novel single nucleotide polymorphis squamous cell carcinoma: A pilot study. <i>Exp L</i> 671. PMID: 32479654	ms in high-ris
Submission date	May 17, 2020	

aSets for GSE150727

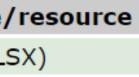
neous squamous cell

cutaneous squamous done on an oncology

on sequencing isk cutaneous 20 Jul;29(7):667-

6

Example: <u>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150727</u>


Platforms (1)	GPL20301 Illu	umina HiSeq 4000 (Homo sapiens)
Samples (20)	GSM4557307	SCC_Localized [D685]
	GSM4557308	SCC_Localized [D720]
	GSM4557309	SCC_Localized [D686]
Relations		
BioProject	PRJNA633390	
SRA	SRP262054	

Download family	Format
SOFT formatted family file(s)	SOFT 🔃
MINIML formatted family file(s)	MINIML 🔃
Series Matrix File(s)	TXT 🕐

Supplementary file	Size	Download	File type/
GSE150727_RAW.tar	1.0 Mb	(http)(custom)	TAR (of XLS
SRA Run Selector 😰			

Raw data are available in SRA

Processed data provided as supplementary file

- GPLxxxxx for Platform records
- **GSMxxxxx** for Sample records
- **GSExxxxx for Series records**
- GDSxxxxx for DataSets
- \succ PRJNAxxxxx \rightarrow BioProject
- \succ SRPxxxxx \rightarrow raw data of Project in Sequence Read Archive (SRA)

Sequence Read Archive (SRA) = raw sequencing data and alignment
 information from high-throughput sequencing platforms is stored
 available to enhance reproducibility and allow new discoveries by comparing data

Platforms include: Roche 454, Illumina, Applied Biosystems SOLiD System, Complete Genomics, Oxford Nanopore and Pacific Biosciences

Example: <u>https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA633390</u>

× ×	▲ Run	BioSample	AvgSpotLen	Bases	Bytes	Experiment	GEO_Accession	Sample Name	Tumor_location
1	SRR11804698	SAMN14943414	109	18.67 M	14.43 Mb	SRX8356142	GSM4557307	GSM4557307	Localized
2	SRR11804699	SAMN14943413	115	23.54 M	18.42 Mb	SRX8356143	GSM4557308	GSM4557308	Localized
3	SRR11804700	SAMN14943412	89	15.98 M	12.90 Mb	SRX8356144	GSM4557309	GSM4557309	Localized
4	SRR11804701	SAMN14943411	112	19.54 M	15.38 Mb	SRX8356145	GSM4557310	GSM4557310	Localized
5	SRR11804702	SAMN14943410	110	17.49 M	13.56 Mb	SRX8356146	GSM4557311	GSM4557311	Localized
6	SRR11804703	SAMN14943409	115	23.58 M	18.45 Mb	SRX8356147	GSM4557312	GSM4557312	Localized
7	SRR11804704	SAMN14943408	115	25.10 M	19.56 Mb	SRX8356148	GSM4557313	GSM4557313	Localized
8	SRR11804705	SAMN14943407	115	22.68 M	17.66 Mb	SRX8356149	GSM4557314	GSM4557314	Localized
9	SRR11804706	SAMN14943406	114	29.44 M	22.90 Mb	SRX8356150	GSM4557315	GSM4557315	Localized
10	SRR11804707	SAMN14943405	115	24.33 M	18.98 Mb	SRX8356151	GSM4557316	GSM4557316	Localized
11	SRR11804708	SAMN14943404	113	56.00 M	43.57 Mb	SRX8356152	GSM4557317	GSM4557317	Metastatic
12	SRR11804709	SAMN14943403	114	24.04 M	18.85 Mb	SRX8356153	GSM4557318	GSM4557318	Metastatic

iGenomes = collection of reference sequences and annotation files

for commonly analyzed organisms

https://support.illumina.com/sequencing/sequencing_software/igenome.html

Species	Source	Build(s)		
Homo sapiens	Ensembl	GRCh37		
	NCBI	GRCh38GRCh38Decoy	build37.2	bı
	UCSC	hg38	hg19–Does not have annotation files.	

build37.1

build36.3

hg18

- hg19–Has the latest annotation files. Use with LRM DNA Amplicon Analysis modules v1.1 and v2.0
- hg19–Use with LRM DNA Amplicon Analysis module v1.0

> NCBI Genome -> NCBI Datasets = resources include information on large-scale

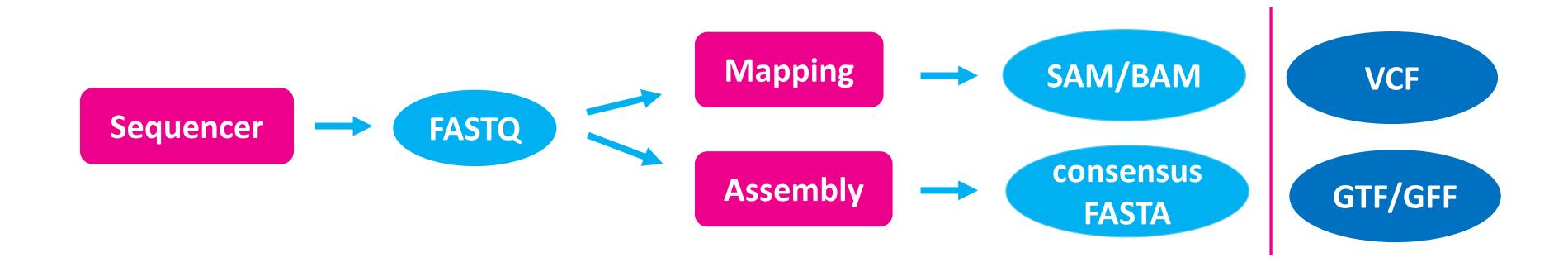
genomics projects, genome sequences and assemblies, and mapped annotations

Example: https://www.ncbi.nlm.nih.gov/datasets/taxonomy/28901/

NCBI Datasets	Taxonomy	Genome	Gene	Command-line tools	Documentatio
Genome					Referen
Browse all 517,426 geno Subspecies	omes			Genomes	ASM694 Washing RefSeg GC
Salmonella enterica sub	sp. arizonae			504	Reford of
Salmonella enterica sub	sp. diarizonae			754	Downlo
Salmonella enterica sub	sp. enterica			214,412	

ion

nce genome


4v2

igton University Genome Sequencing Center (2016). Strain: LT2. CF_000006945.2

load

12

- FASTQ = common file format for sequence read data
 - combining both sequence and associated per base quality score (~ FASTA + quality)

Data formats

 \succ FASTA format = simple text-based format for representing sequences (nt and aa)

 \rightarrow first line (header): summary description of sequence

 \rightarrow starts with ">" followed by accession number or other unique identifier

SARS-CoV-2 Belgium 2021.fasta - Notepad

File Edit Format View Help

>OL672836.1 Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/BEL/rega-20174/2021, complete genome AGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACG CAGTATAATTAATAACTAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCT TACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTTTTGTCCGGGTGTGACCGAAAGGTAA GATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAACACACGTCCAACTCAGTTTGCCTGTTTTACAGGTT CGCGACGTGCTCGTACGTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACATCTTA AAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTT CATCAAACGTTCGGATGCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAA GGCATTCAGTACGGTCGTAGTGGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGG CTTACCGCAAGGTTCTTCTTCGTAAGAACGGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGCCGATCT

FASTA format = simple text-based format for representing sequences (nt and aa)

 \rightarrow actual sequence on the line(s) following the first header line

→ filename extensions: .fasta , .fa, .fna , .faa

SARS-CoV-2_Belgium_2021.fasta - Notepad

File Edit Format View Help

iting sequences (nt and aa) eader line

BCL format

BCL format = base call files

Sequencing run software

 \rightarrow generates BCL file containing base calls and associated quality scores (Q-scores)

- Most data analysis applications require FASTQ files as input
 - → illumina **bcl2fastq** conversion software

https://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html

- FAST5 format = standard sequencing output in which raw signals are stored by Oxford Nanopore Technologies (ONT) sequencers e.g. MinION
 - \rightarrow based on the hierarchical data format HDF5 format which enables storage of large and complex data
 - \rightarrow basecalling via guppy (or bonito) ONT basecallers
- POD5 format = more recent prototype file format for raw signal data
 - \rightarrow POD5 is replacing FAST5 as native file format

https://github.com/nanoporetech/pod5-file-format

- Basecalling software reads signals from sequencer
 - \rightarrow calls bases and assigns a quality value to each base called
 - → introduced PHRED quality score of a base call
 - \rightarrow PHRED scores are now standard for representing sequencing read base qualities
- > PHRED scores used in FASTQ, also used in SAM format

$Q_{\rm PHRED} = -10 \times \log_{10}(P_e)$

Pe is the estimated probability of error (in this case, the estimated probability of the base the call being wrong)

- Storing PHRED scores as single characters (or bytes)
 - \rightarrow space efficient encoding
- File to be human readable and easily edited
 - \rightarrow restricted choices to ASCII printable

characters (! to ~) = 33–126 (decimal)

\rightarrow	ASCII code	Char
	64	@

Symbo
ļ
#
\$
%
% & '
1
(
)
()
+
,
-
1
0
1
/ 0 1 2
3
4
5

ol	ASCII Code	Q-Score	Symbol	ASCII Code	Q-Score
	33	0	6	54	21
	34	1	7	55	22
	35	2	8	56	23
	36	3	9	57	24
	37	4	:	58	25
	38	5	;	59	26
	39	6	<	60	27
	40	7	=	61	28
	41	8	>	62	29
	42	9	?	63	30
	43	10	@	64	31
	44	11	А	65	32
	45	12	В	66	33
	46	13	С	67	34
	47	14	D	68	35
	48	15	Е	69	36
	49	16	F	70	37
	50	17	G	71	38
	51	18	Н	72	39
	52	19	1	73	40
	53	20			

FASTQ format

Phred assigns Q score of 30 (Q30) to a base \rightarrow equivalent to probability of incorrect base call 1 in 1000 times

> Q30 considered benchmark for quality in NGS

 \geq Q20 \rightarrow 99% \rightarrow incorrect base call 1 of 100

_	
	_

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

Table 1: Quality Scores and Base Calling Accuracy

Symbol	ASCII Code	Q-Score	ore Symbol ASCII Code		Q-Score
ļ.	33	0	6	54	21
	34	1	7	55	22
#	35	2	8	56	23
\$	36	3	9	57	24
%	37	4	:	58	25
&	38	5	;	59	26
1	39	6	<	60	27
(40	7	=	61	28
)	41	8	>	62	29
*	42	9	?	63	30
+	43	10	@	64	31
1	44	11	А	65	32
-	45	12	В	66	33
	46	13	С	67	34
1	47	14	D	68	35
0	48	15	E	69	36
1	49	16	F	70	37
2	50	17	G	71	38
3	51	18	Н	72	39
4	52	19	l I	73	40
5	53	20			

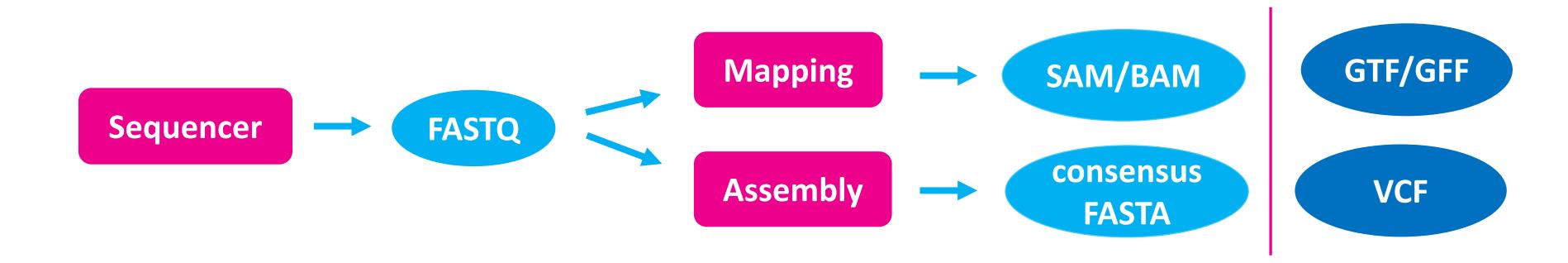
FASTQ format

- Each read consists of exactly 4 lines
- FASTQ read example:
 - @title and optional description
 - \checkmark sequence line(s)
 - +optional repeat of title line \checkmark
 - ✓ quality line(s)

- **1** @SRR014849.1 EIXKN4201CFU84 length=93
- - AGCAATGCCAATA
- - / = <?7 = 9 < 2A8 = =

Example: SRR11804708_1000reads.fastq

3 +SRR014849.1 EIXKN4201CFU84 length=93 **4** 3+&\$#""""""7F@71,'";C?,B;?6B;:EA1EA 1EA5'9B:?:#9EAOD@2EA5':>5?:%A;A8A;?9B;D@


2 GGGGGGGGGGGGGGGGGGGGGCTTTTTTTTTTGTTTGGAACCGAAAGG

GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA

22

FASTQ = common file format for sequence read data

combining both sequence and associated per base quality score (~ FASTA + quality)

- > GFF and GTF are file formats with genomic annotation information for next-generation sequencing data analysis
- GFF = General Feature Format, current version GFF3 (.gff)
- GTF = General Transfer format, identifical to GFF version 2 (.gtf)

- > Each feature is represented on one line of text and consists of nine columns (fields) of data values
- \succ Data field is tab-separated and must contain value (empty \rightarrow .)
- Optional: track definition lines

#!	#!genome-build GRCh38										
#!genome-date 2013-12											
<pre>#!genome-build-accession NCBI:GCA_000001405.15</pre>											
#!	genebuil	ld-last	t-updat	ed 2014-	-08						
11	navana	gene	11869	14409		+		gene_id "ENSG00000223972"			
11	navana	exon	11869	14409	•	+	-	gene_id "ENSG00000223972"			
1	havana	exon	11869	12227		+		gene_id "ENSG00000223972"			
1	havana	exon	12613	12721	-	+		gene_id "ENSG00000223972"			

1	2	3	4	5	6	7	8	9
chr1	unknown	stop_codon	1197845	1197847		+		<pre>gene_id "TTLL10"; gene_nam</pre>
chr1	unknown	exon 1203508	1203960		-		gene_id	"TNFRSF18"; gene_name "TNF
chr1	unknown	exon 1203508	1203968		-		gene_id	"TNFRSF18"; gene_name "TNF
chr1	unknown	exon 1203508	1203968		-		gene_id	"TNFRSF18"; gene_name "TNF
chr1	unknown	<pre>stop_codon</pre>	1203591	1203593		-		<pre>gene_id "TNFRSF18"; gene_r</pre>
chr1	unknown	CDS 1203594	1203960		-	1	gene_id	"TNFRSF18"; gene_name "TNF

Structure of the **feature line**:

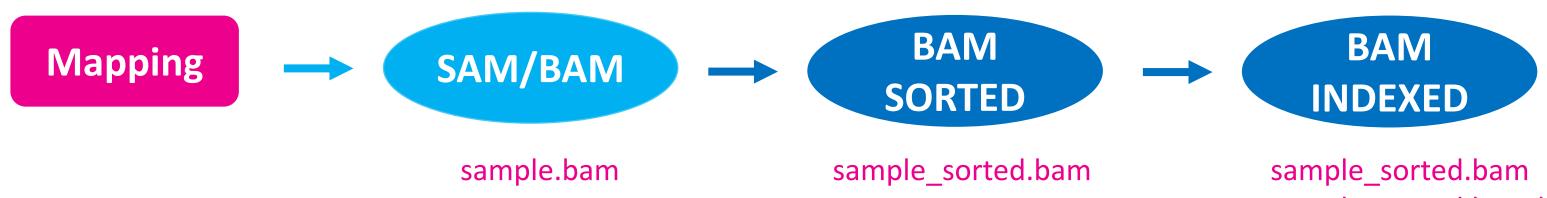
- 1. Name of sequence where feature is located
- 2. Keyword identifying source of feature
- 3. Feature type name (e.g. gene, exon, CDS)
- 4. Start (1-base offset)
- 5. End (1-base offset)
- 6. Score
- 7. Strand ("+" positive or "-" negative or "." undetermined)
- 8. Frame (GTF) or phase (GFF3) of CDS features
- 9. Attributes

ame "TTLL10"; p_id "P14573"; transcript_id "NM_001130045"; NFRSF18"; p_id "P10164"; transcript_id "NM_148901"; tss_id NFRSF18"; p_id "P37213"; transcript_id "NM_148902"; tss_id NFRSF18"; p_id "P26347"; transcript_id "NM_004195"; tss_id _name "TNFRSF18"; p_id "P10164"; transcript_id "NM_148901"; NFRSF18"; p_id "P10164"; transcript_id "NM_148901";

Example: genes1000.gtf

SAM/BAM/BAI format

- Raw sequence reads from sequencers have no genomic position information and must be mapped or aligned to a known reference genome
- \succ Sequence Alignment/Map or SAM format \rightarrow generic alignment format for storing read alignments against reference sequences
- Supports short and long reads (up to 128Mbp) produced by different sequencing platforms

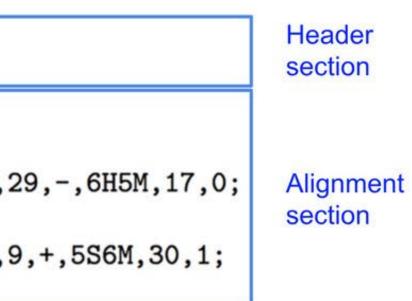


- SAM file is a tab-delimited text file
- BAM format is the compressed binary version of the SAM format
- BAM files can be indexed for fast retrieval of alignments overlapping a specified region without going through whole alignment
 - → companion index file of a bam file is in the BAI format (.bai)

SAM/BAM/BAI format

Before indexing, BAM must be sorted by reference ID and leftmost coordinate

 \succ To convert SAM <-> BAM and sort/index the files \rightarrow samtools (http://www.htslib.org/)


sample_sorted.bam.bai

29

SAM/BAM/BAI format

@HD V	N:1.5	5 50	: cod	ord	inate						
QSQ S	N:ret	E LN	:45								
r001	99	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATACTG	*	
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA	*	
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	SA:Z:ref,2
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*	
r003	2064	ref	29	17	6H5M	*	0	0	TAGGC	*	SA:Z:ref,9
r001	147	ref	37	30	9M	=	7	-39	CAGCGGCAT	*	NM:i:1
						T					 Optional fie
										ວບ	AL: read quality
									SEQ: read sequer	nce	
									EN: the number of bases of		
							1		ans the current read is the		
									: Position of the primary a tion is unavailable. It corre	-	
						RN	IEXT	: refe	rence sequence name of t	he	primary alignme
								.	NEXT read is the paired re		
				5	CIGAR: sur	nm	ary o	of alig	nment, e.g. insertion, dele	tior	1
			N	IAP	Q: mapping qua	lity					
			PO	S : 1-	based position						
		RNA	ME:	refe	rence sequence	e na	ame,	e.g. c	hromosome/transcript id		
	FLAG	: indi	cates	s alig	nment informati	on	abo	ut the	read, e.g. paired, aligned,	eta) .
QNAM	E: quei	ry tem	plate	e nar	me, aka. read ID)					

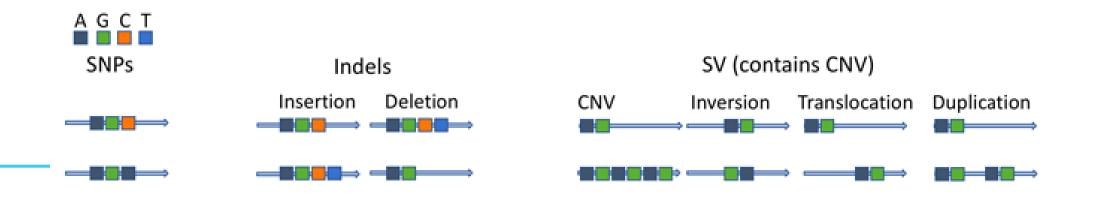
fields in the format of TAG:TYPE:VALUE

ity; * meaning such information is not available

ads from the same fragment. Plus/minus st read. E.g. compare first and last lines.

EXT read in the template. Set as 0 when the column.

nent of the NEXT read. For paired-end of the RNAME column.


- SAM/BAM files contain a header section (optional) and an alignment section
- Each header line begins with @ character followed by one of two-letter header record type codes: @HD (header definition start),
 @SQ (reference sequence dictionary), @RG (read group information),
 @PG (program information), @CO (one-line text comment)

- The alignment section contains sequences with genomic position and other descriptive information \rightarrow each single sequence (short read from FASTQ) and its associated information are presented as one line text
 - → consists of 11 mandatory, tab-delimited text fields

> Variant Call Format (VCF) is a

text file format for

variation data such as:

- ✓ single nucleotide variant (SNP)
- ✓ insertion/deletion (indel)
- ✓ copy number variant (CNV)
- ✓ structural variant (SV)

Ensembl Variation - Variant classification

Sequence variants

Туре	Description	Example (Reference / Alterna	ative)
SNP	Single Nucleotide Polymorphism	Ref: TTGACGTA	Alt:TTG G CGTA
Insertion	Insertion of one or several nucleotides	Ref: TTGACGTA	Alt:TTGA TG CGTA
Deletion	Deletion of one or several nucleotides	Ref: TTGACGTA	Alt:TTGGTA
Indel	An insertion and a deletion, affecting 2 or more nucleotides	Ref: TTGACGTA	Alt: TTG GCT CGTA
Substitution	A sequence alteration where the length of the change in the variant is the same as that of the reference.	Ref: TTG AC GTA	Alt: TTG TA GTA

Structural variants

Туре	Description
CNV	Copy Number Variation: i the copy number of a give
Inversion	A continuous nucleotide s the same position
Translocation	A region of nucleotide see translocated to a new pos

	Example (Reference / Altern	ative)
increases or decreases ren region	Reference:	"Gain" of one copy: "Loss" of one copy:
sequence is inverted in	Reference:	Alternative:
quence that has sition	Reference:	Alternative:

VCF

- Meta-information lines (##)
- > A tab-delimited header line (#)
- Data lines each containing
 - information about a position
 - in the genome
 - (also tab-delimited)

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT
1	3000019		G	GA	20.8655	MinDP;M	inAB	INDEL;DP
1	3001236		Α	ATTTTT,	ATTTT	179	Het	INDEL;DP

Example: 129P2_1000lines.vcf

129P2_01aHsd)P4=1,0,3,0;DP=4;CSQ=A||||intergenic_variant|)P4=10,3,5,17;DP=35;CSQ=TTTT||||intergenic_va

> The **header line** starting with #CHROM contains 8 fixed, mandatory columns

- 1. #CHROM = chromosome identifier from reference genome
- 2. POS = reference position with 1^{st} base having position 1, sorted numerically
- 3. ID = semi-colon separated list of identifiers
- 4. REF = reference base(s) in uppercase (A,C,G,T,N)
- 5. ALT = comma separated list of alternate non-reference alleles
- 6. QUAL = phred-scaled quality score for assertion in ALT (high \rightarrow high confidence)
- 7. FILTER = PASS if this position has passed all filters (if not: semi-colon list of codes)
- 8. INFO = additional information as semicolon separated series of <key>=<value>

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT
1	3000019		G	GA	20.8655	MinDP;M	linAB	INDEL;DP
1	3001236	•	А	ATTTTT	,ATTTT	179	Het	INDEL;DP

Example: 129P2_1000lines.vcf

```
129P2 01aHsd
P4=1,0,3,0;DP=4;CSQ=A||||intergenic variant|
P4=10,3,5,17;DP=35;CSQ=TTTT||||intergenic va
```


- \succ If genotype data is present in the file \rightarrow FORMAT column
- First format is given specifying data types and order (e.g. GT:GQ:DP:HQ)
- \succ Followed by one field (column) per sample (e.g. A|A:::23:23,34)
- \blacktriangleright **GT** = genotype, **DP** = read depth, **FT** = sample genotype filter, **GL** = three likelihoods for AA, AB, BB genotypes (A=ref, B=alt), **GQ** = genotype quality, **HQ** = haplotype quality

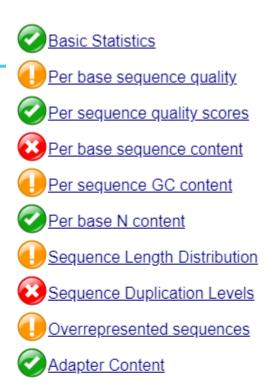
Example: 129P2_1000lines.vcf

Data analysis and visualization

- Quality control (QC) of sequencing data (FASTQ files) generated by high throughput technologies is important for meaningful downstream analysis
- One of most popular QC tools is FastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ \rightarrow runs a series of tests on .fastq(.gz) file and generates comprehensive QC report

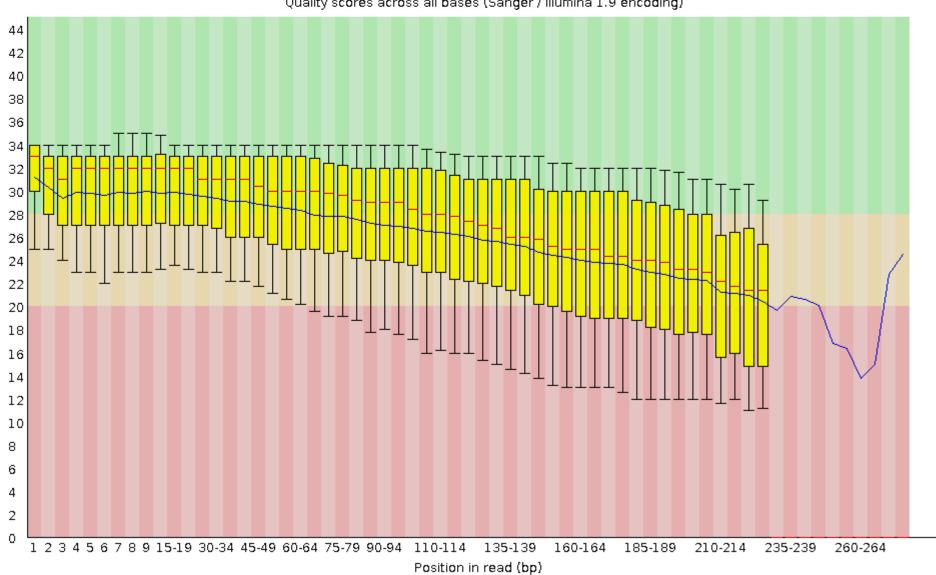
- > Each test is flagged as a **pass**, warning or fail in comparison with what you expect from a normal large dataset
- > Warnings (and even failures) do not necessarily mean there is a problem with the data but tells you it is unusual

Look at the typical results in the output html file: SRR11804708 fastqc.html


- Fastqc documentation explains each flag in the report: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/
- Per base sequence quality
 - \rightarrow shows overview of range of quality values across all bases at each position in file
 - \rightarrow each position box-whisker-plot:
 - red line for median quality, blue line is mean quality, yellow box for IQR

Report **Report**

Quality control


Summary

Basic Statistics

Measure	
Filename	SRR118
File type	Conven
Encoding	Sanger
Total Sequences	492006
Sequences flagged as poor quality	0
Sequence length	8-276
%GC	47

•Per base sequence quality

Example: SRR11804708_fastqc.html

Value

804708.fastq.gz ntional base calls r / Illumina 1.9

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

Quality control

MultiQC (<u>https://multiqc.info</u>) is a reporting tool that parses summary statistics from

results and log files generated by other bioinformatics tools such as fastqc

General Stats					
					FastQ
FastQC	3	45			
Sequence Quality Histograms					
Per Sequence Quality Scores		40			_
Per Base Sequence Content	3	35	<u> </u>		
Per Sequence GC Content		_			
Per Base N Content	1	30			
Sequence Length Distribution	ore	25			
Sequence Duplication Levels	Phred Score	-			
Overrepresented sequences	Phre	20			
Adapter Content					
		15			
		10			
		5			
		0			

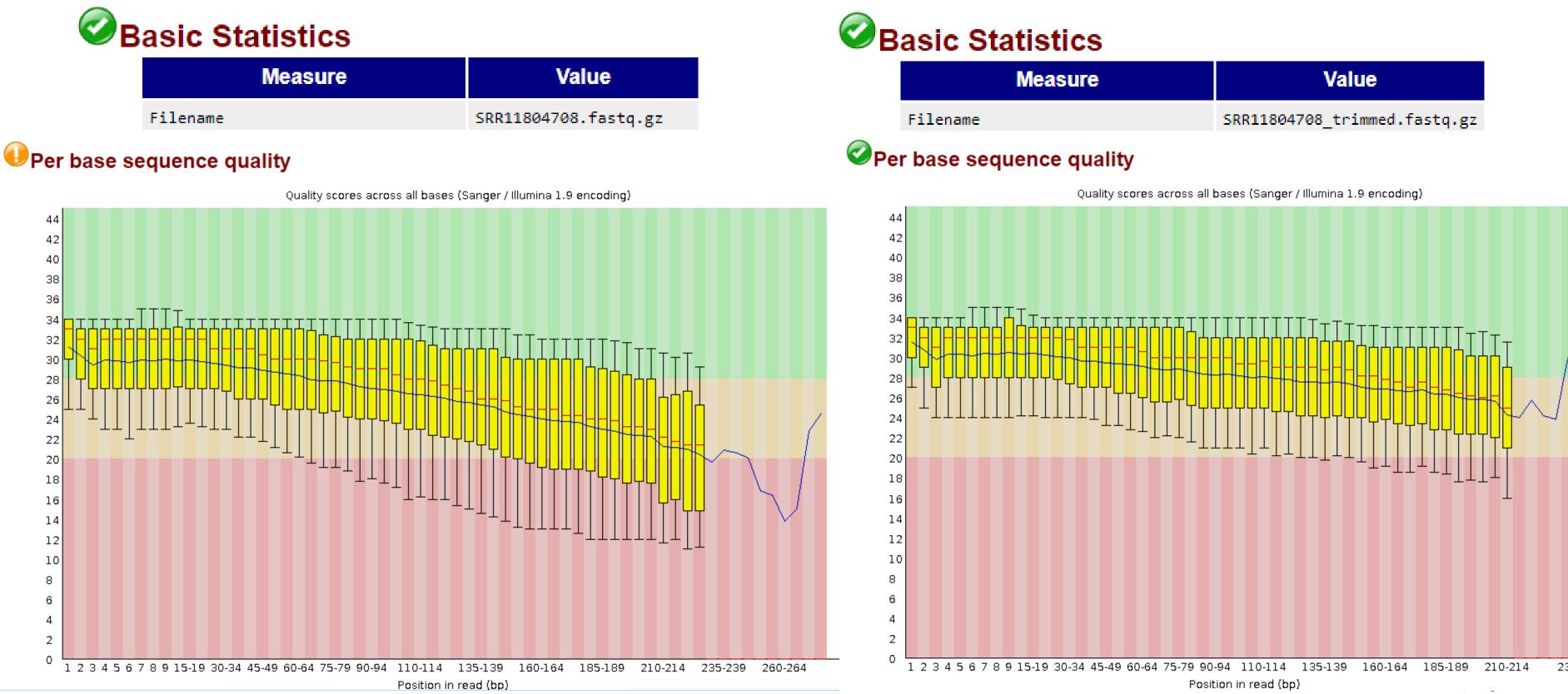
FastQC: Mean Quality Scores

25

Position (bp)

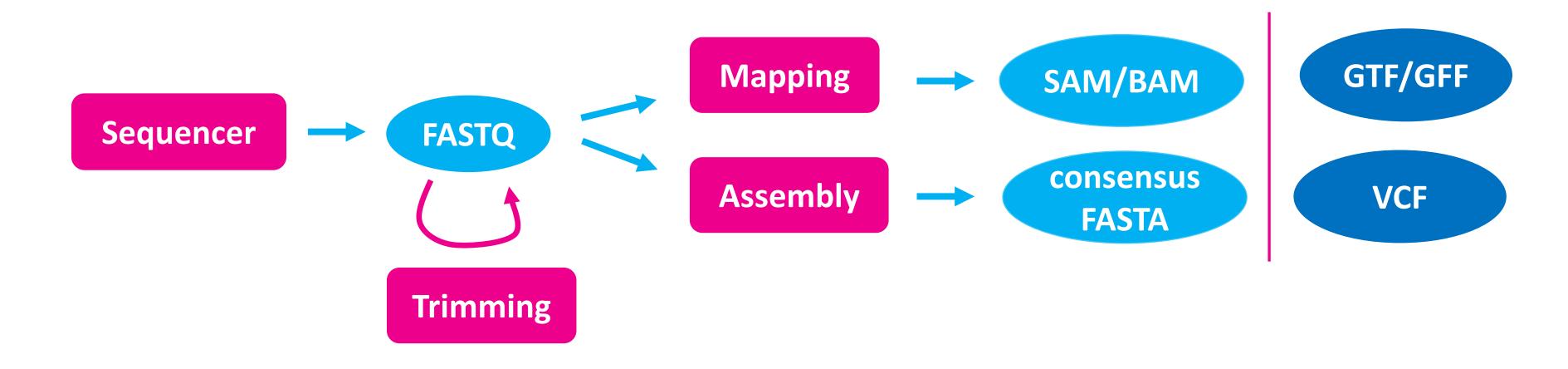
30

Example: multiqc_report.html


Created with MultiOC

Preprocessing data: read trimming

- Raw reads from Next Generation Sequencing are processed prior to analysis
- One of most used preprocessing procedure is **read trimming** -> remove low quality bases while preserving longest high quality part of read \rightarrow trimming is beneficial in RNA-seq, SNP identification and genome assembling \rightarrow some tools can also **remove** (Illumina) **adapters**
- Trimming tools can be classified in two classes based on algorithm: e.g. **Trimmomatic** (window based) and Cutadapt (running sum)

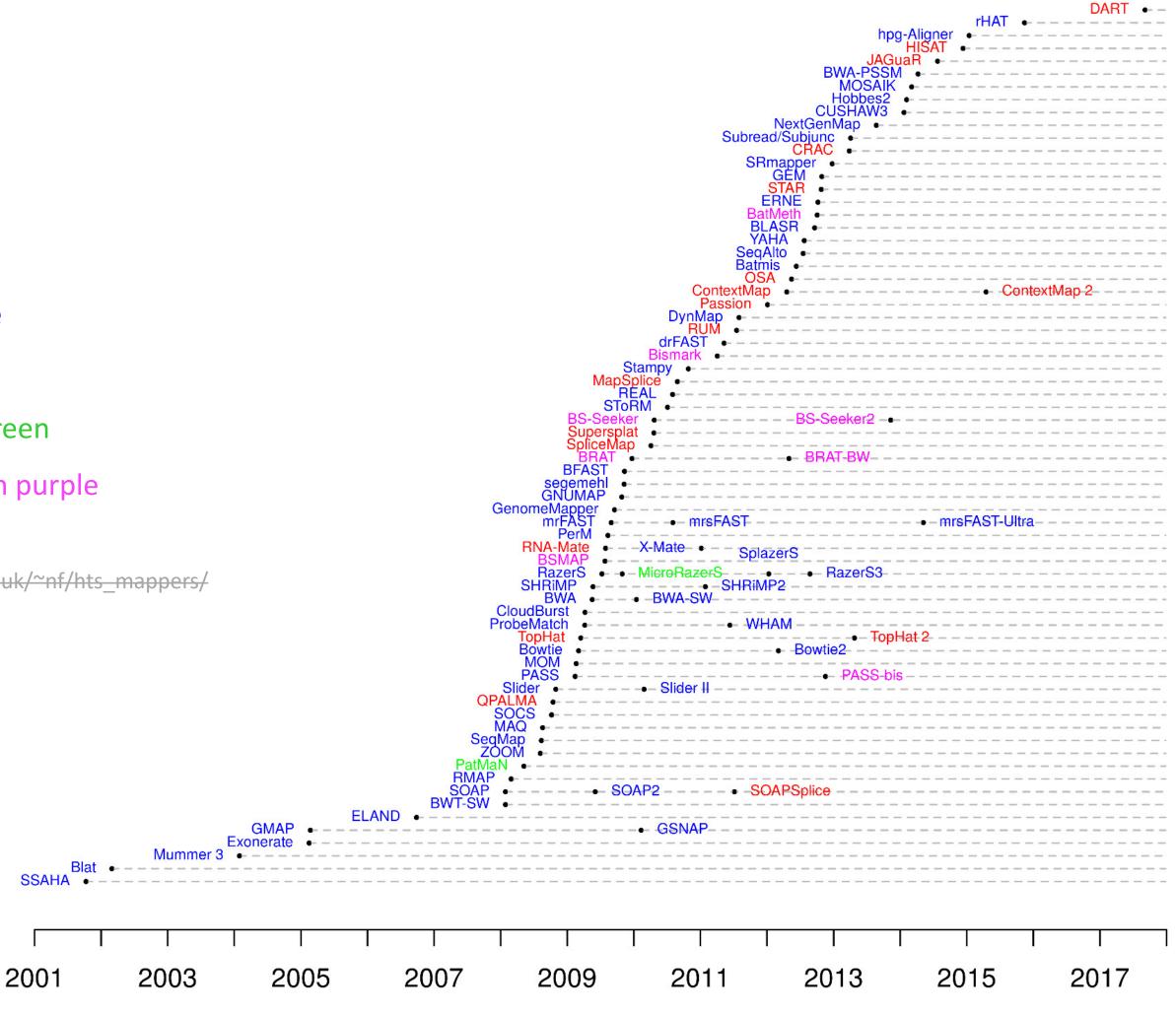

After trimming...

235

FASTQ = common file format for sequence read data

combining both sequence and associated per base quality score (~ FASTA + quality)

- Fundamental step in high-throughput sequence analysis is alignment or mapping of the reads to the reference sequence
- Many software tools available
 - \rightarrow when considering choice \rightarrow suitable for specific application?
 - \rightarrow type of data (DNA, RNA, miRNA, bisulfite), sequencing platform


Mappers

Color legend:

DNA mappers in blue RNA mappers in red miRNA mappers in green

Bisulphite mappers in purple

Source: https://www.ebi.ac.uk/~nf/hts_mappers/

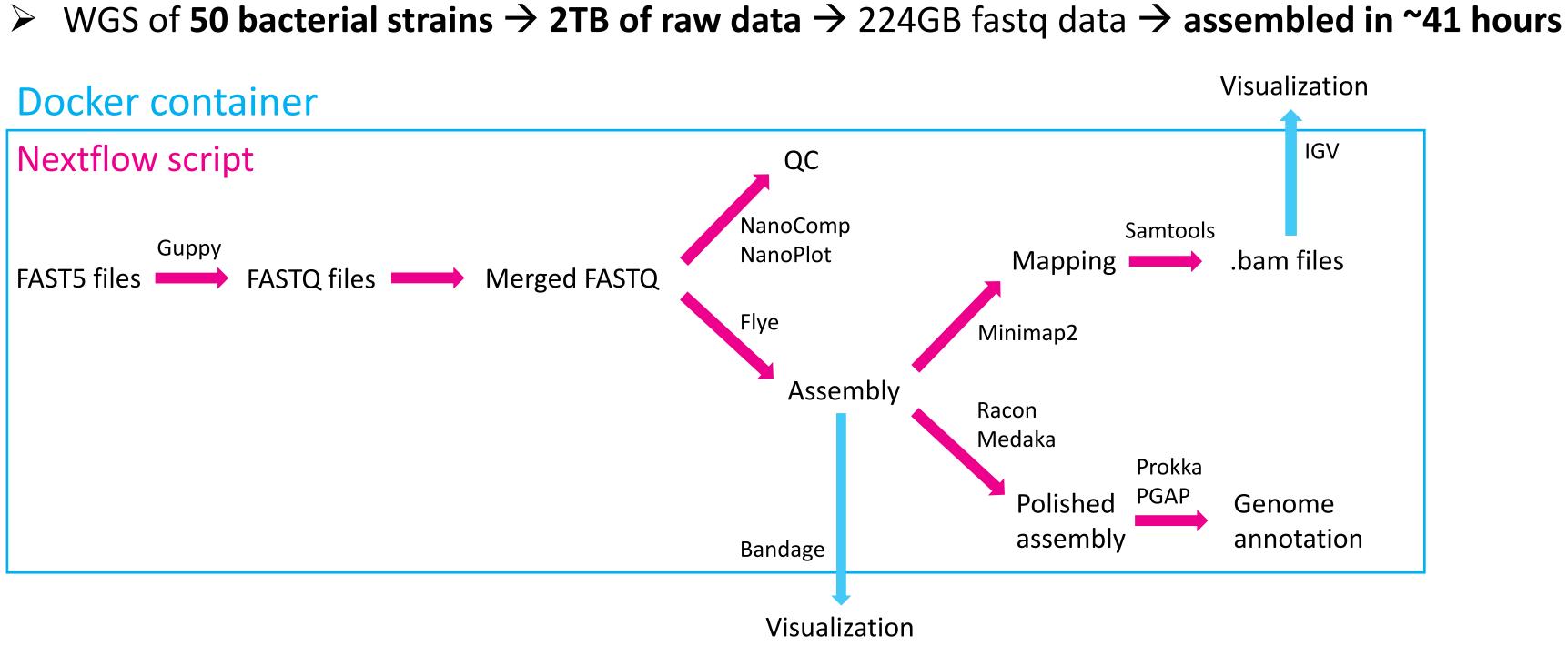
Years

- **DNA** mappers: most used are **BWA** and **Bowtie2**
- **RNA** mappers: most used are Tophat2/HISAT2 and STAR

DNA/RNA mapper for <u>long reads</u>: **Minimap2**

IGV

IGV = Integrative Genomics Viewer

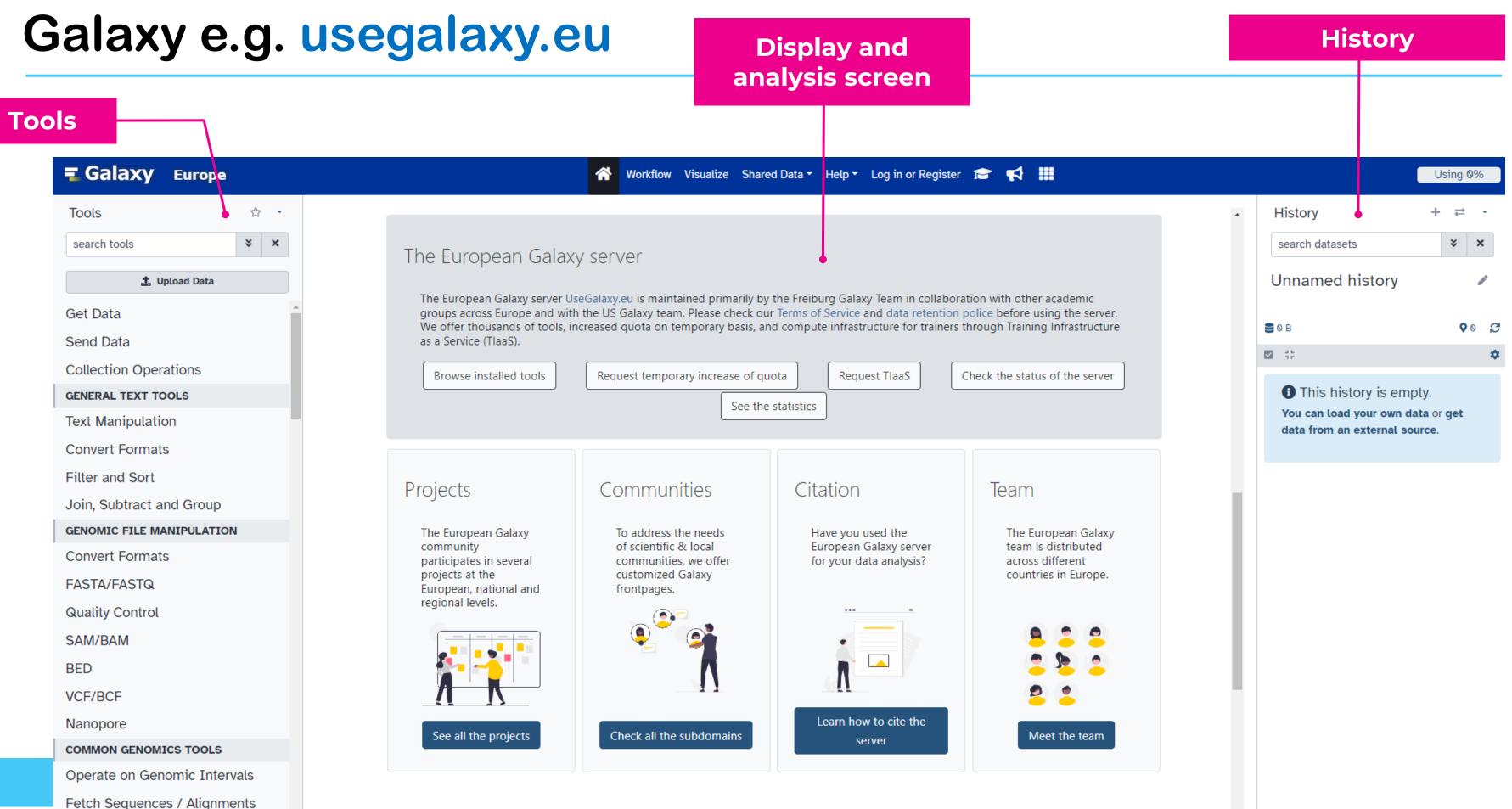

- → open source (free) desktop genome visualization tool for Windows/Mac/Linux
- \rightarrow also available as webapp: <u>https://igv.org/app/</u>

Load the .sorted.bam and .sorted.bai files as demonstrate to visualize the SNP rs713598 in region chr7:141,973,472-141,973,627

	Geno +	Mag	g ÷	Summary +		
	(C;C)	1.1		Can taste bitter.		
ed	(C;G)	1.1		Can taste bitter.		
	(G;G)	1.1		Possibly unable to taste bitter in some foods.		
	Reference GR			Ch38 38.1/141		
	Chromosome 7					
	Position		141	973545		
	Gene		TAS	2R38		

Example of a bioinformatics workflow / pipeline

Galaxy


- Open web-based platforms (125+)
 - \rightarrow facilitates centralized data analysis
- Analysis using available tools
 - \rightarrow integrate diverse set of readily available tools tailored for different analysis needs
- No IT-knowledge required
 - \rightarrow intuitive user interface and workflow, promoting accessibility

51

Display and

Novest hogeschool Nanopore sequening 8 & 10 November 2023

PROGRAMMA

• Intake gesprek:

Er zal eerst een online intakegesprek worden georganiseerd op basis van de beschikbare tijdstippen van alle deelnemers. Tijdens dit gesprek zullen de DNA stalen besproken worden die tijdens de workshop zullen worden gesequenced. **Het is dus mogelijk om uw eigen staal te sequencen!** Daarnaast zal ook de werking en techniek worden toegelicht.

• 8 november 2023:

Tijdens deze dag gaan we aan de slag in het labo met al het beschikbare DNA materiaal. **We doen de nodige** stappen voor het maken van een DNA library en we voeren de DNA sequenering uit op de beschikbare flowcellen. We laten de runs lopen tot er geen actieve poriën meer beschikbaar zijn.

• 10 november 2023:

We gaan aan de slag met de data van onze runs. Hiervoor gaan we aan de slag met een in-huis ontwikkelde tool, Epi2ME en stellen we Galaxy voor. **We geven jullie dus de kans om met verschillende tools te werken om zelf aan de slag te gaan met jullie data**.

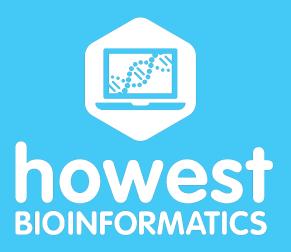
PRAKTISCHE INFO

• Hoe inschrijven?

Bij interesse of meer info: **marjolein.vandekerckhove@howest.be** Mailen is de boodschap om in te schrijven, de plaatsen zijn beperkt (maximum 8 deelnemers)

New workshops planned

- ➢ May 2024
- September 2024



bio-informatica.be

ADVANCED BACHELOR OF BIOINFORMATICS

NANOPORE SEQUENCING HANDS-ON WORKSHOP

BIOINFORMATICS @HOME VIA DISTANCE LEARNING

AI FOR HEALTHCARE