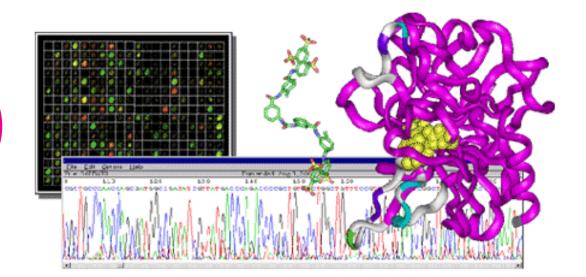


Bioinformatics for dummies MB&C2024 Workshop

Cedric Hermans Paco Hulpiau

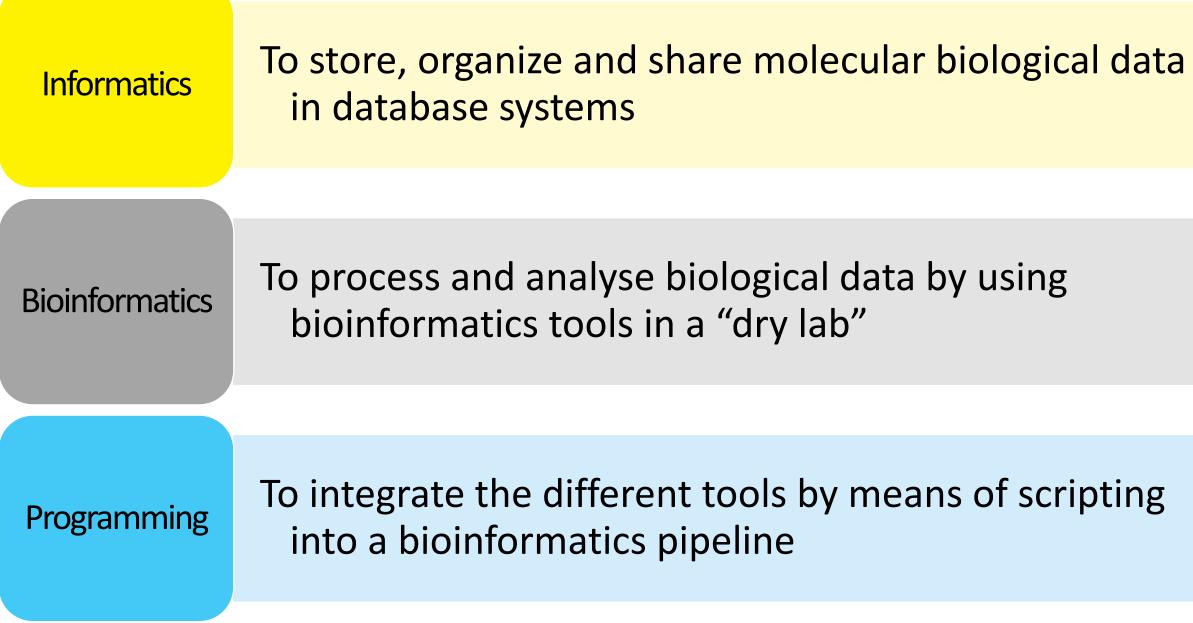
Introduction

Molecular biology


Combine:

- New insights and technologies in molecular biology
- Advances in information technologies

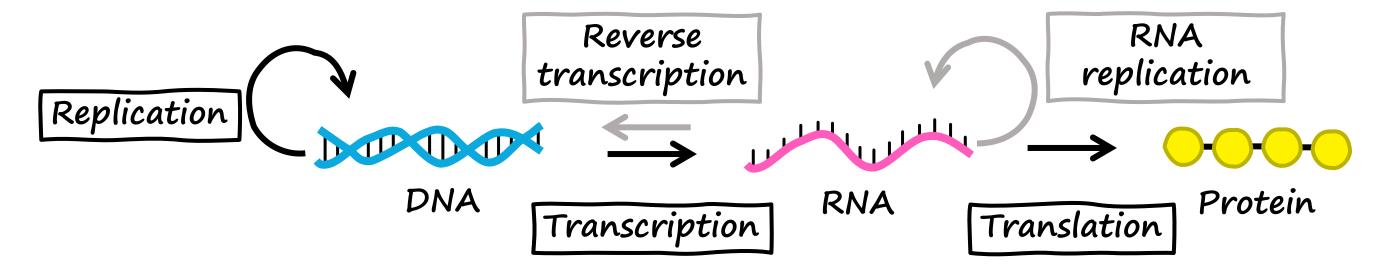
Bioinformatics



Information technologies

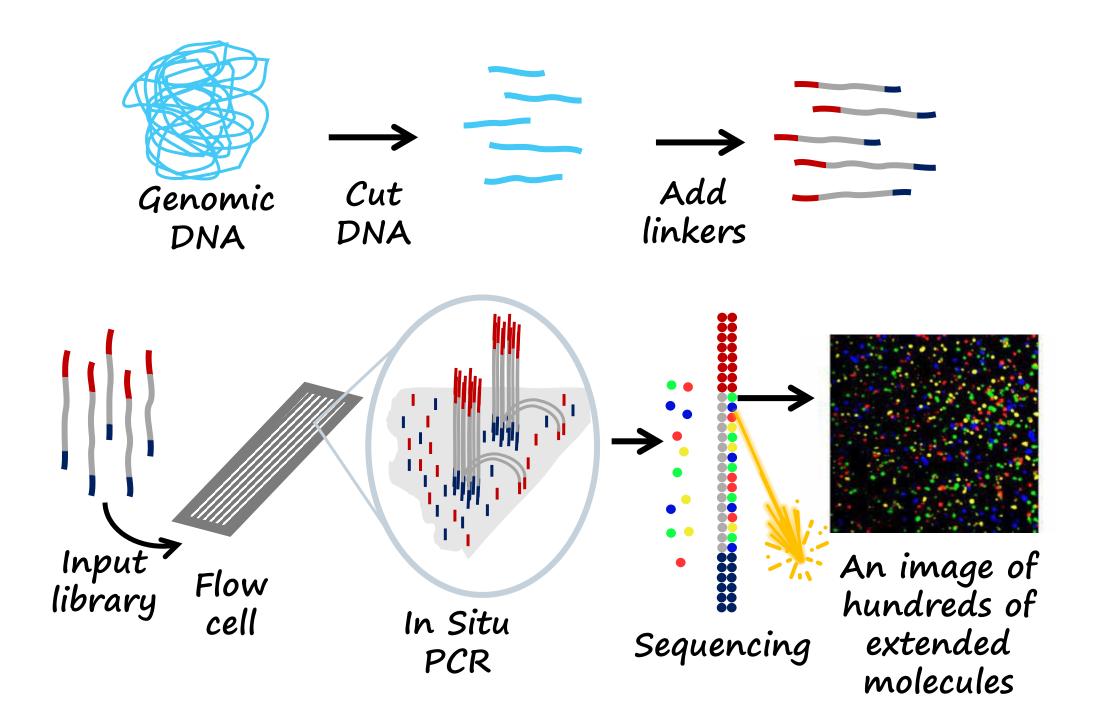
Introduction

1/02/2024


Molecular biology and bioinformatics

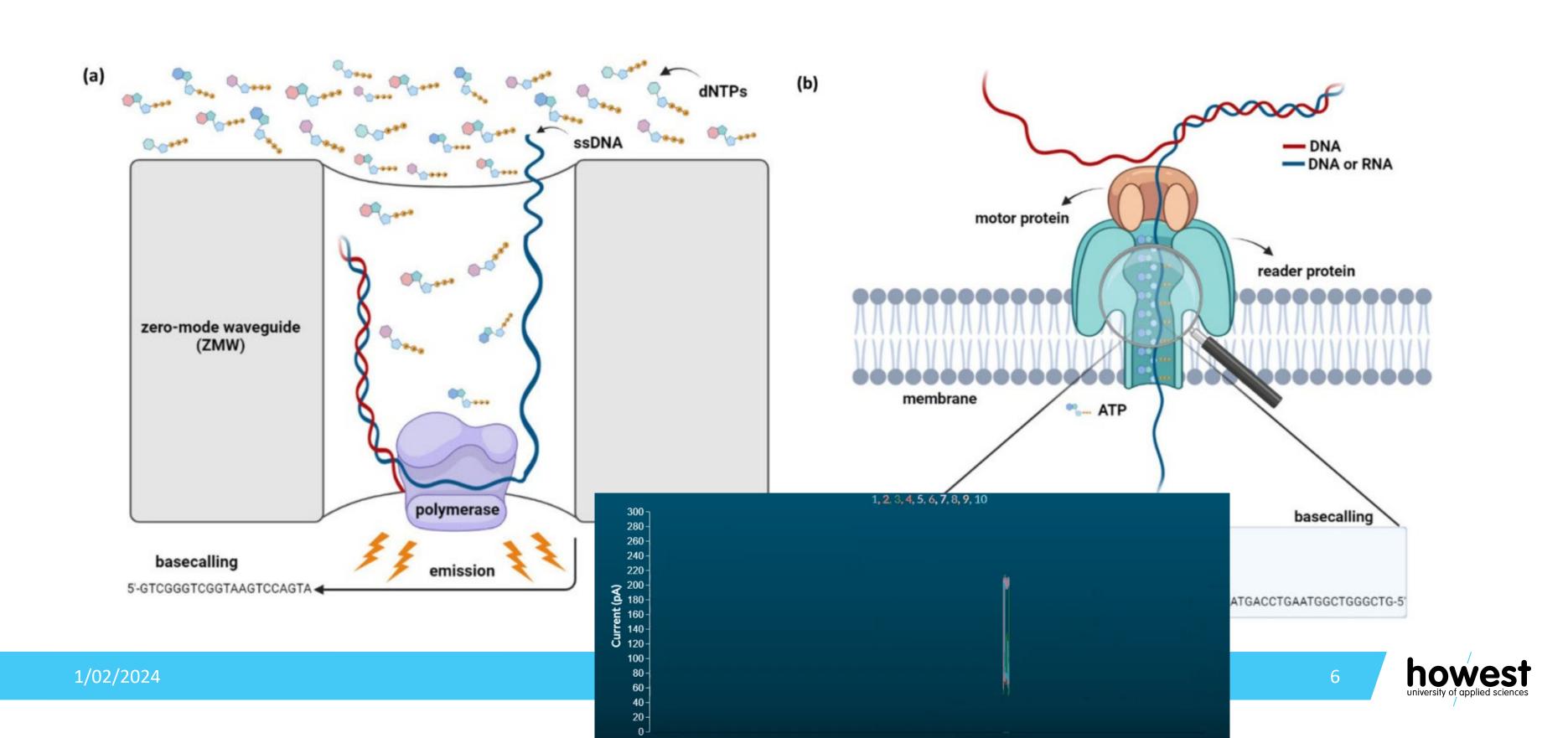
Important (high-throughput) technologies:

- Next Generation Sequencing
 - Sequencing and expression analysis
- Microarray


Expression and genetic variation analysis

- Mass spectrometry
 - Protein (sequence) identification

Next generation sequencing

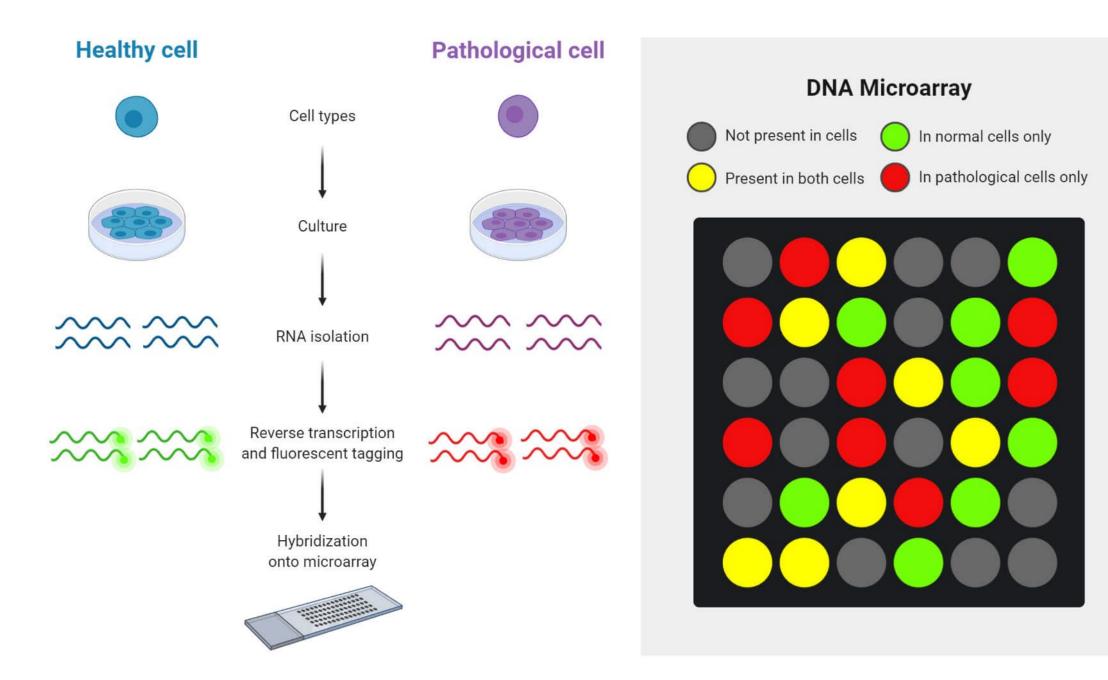

Short-read NGS

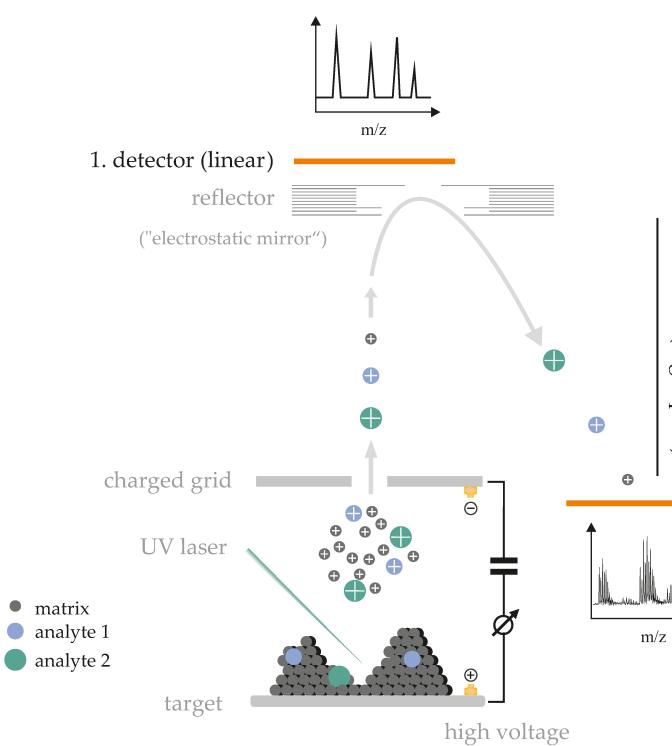
- 2 approaches:
 ➤ Sequencing by synthesis
 ➤ Sequencing by ligation
- 35-700 bp read length
- High accuracy (~ 99,99%)
- Complex assembly

Next next generation sequencing

Athanasopoulou K, Boti MA, Adamopoulos PG, Skourou PC, Scorilas A. Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics. Life (Basel). 2021 Dec 26;12(1):30. doi: 10.3390/life12010030. PMID: 35054423; PMCID: PMC8780579.

Microarrays



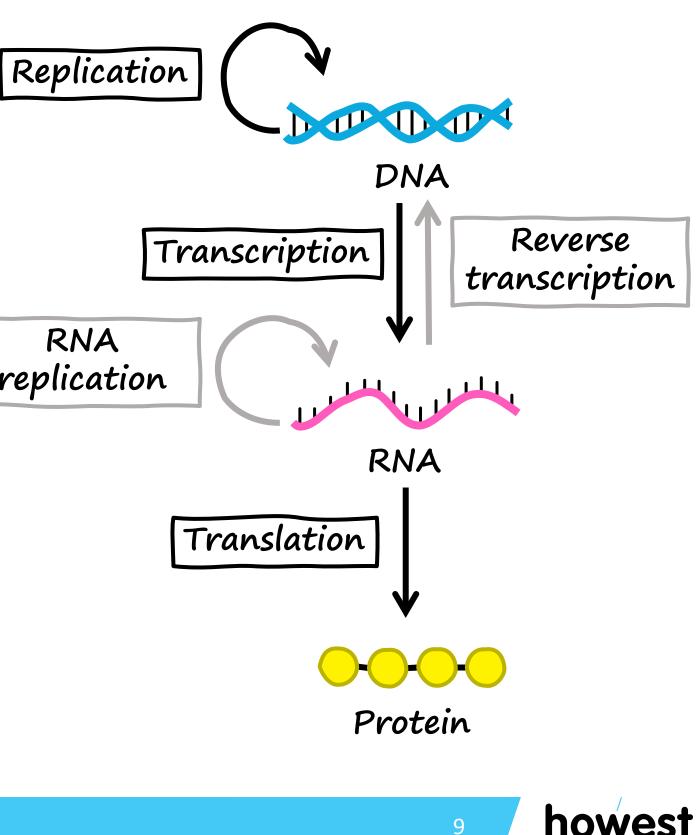

Image By Sagar Aryal, created using biorender.com

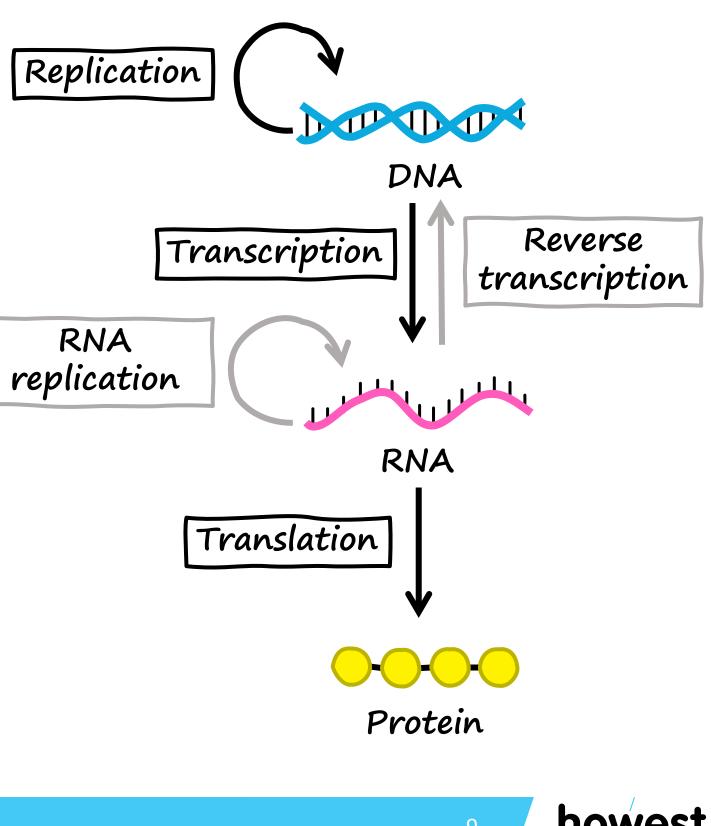
1/02/2024

Mass spectrometry

1/02/2024

Leopold, J., Popkova, Y., Engel, K. M., & Schiller, J. (2018). Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. *Biomolecules*, 8(4), 173. https://doi.org/10.3390/biom8040173

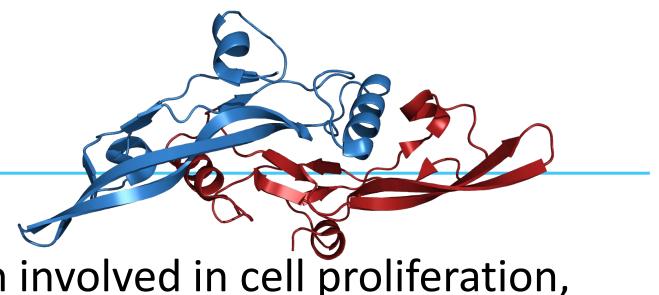

2. detector (reflector)



Molecular biology and bioinformatics

Biological databases:

- DNA
 - Sequence and loci
 - (Natural) genetic variation
- RNA \bullet
 - Transcripts (and variants)
 - Gene expression
- Protein \bullet
 - Sequence and function
 - Phenotype (and diseases)



Exploratory example: **TGF beta 1** – an important protein involved in cell proliferation, differentiation and growth

NCBI Gene	https://www.ncbi.nlm.nih.gov/gene/7040 General and integrated sequence and locus information
NCBI Nucleotide	<u>https://www.ncbi.nlm.nih.gov/nuccore/?term=TGFB1+AN</u> All available (partial) TGF beta 1 nucleotide sequences →
Ensembl	https://www.ensembl.org/Homo_sapiens/Gene/Summar General information + detailed transcripts and gene expre
UniProt or NCBI Protein	<u>http://www.uniprot.org/uniprot/P01137</u> High-quality recourse of protein sequence and functional

ND+"Homo+sapiens"[Organism]

• ± 138 records (!)


ry?db=core;g=ENSG0000105329

- ression
- l information

Example 1: Look for the nucleotide sequence of PSA

- https://www.ncbi.nlm.nih.gov/nucleotide/
- NCBI nucleotide query: "(prostate specific antigen)" restricted to humans

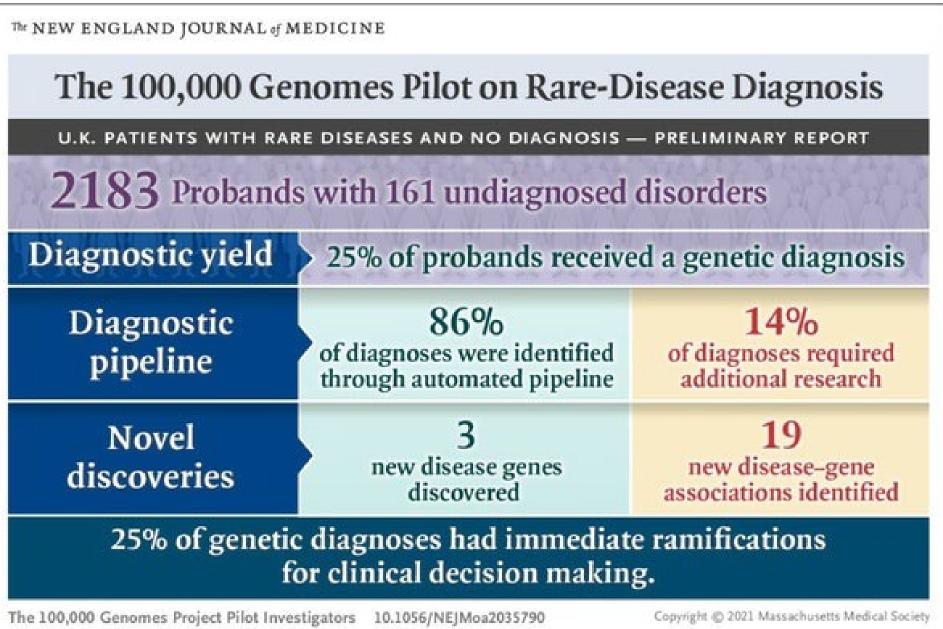
Home series mPNA for prostate specific antigen (KLK2 gone), splice variant 1

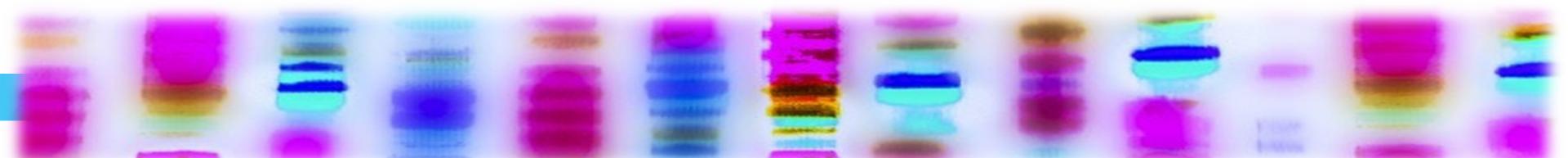
1/02/2024

Log in	
Search Help	р
Filters: <u>Manage Filters</u>	
Results by taxon Top Organisms [Tree] Homo sapiens (722) synthetic construct (2)	9
Find related data Database: Select Find items	9
Search details prostate specific antigen[All Fields] AND "Homo sapiens"[Organism]	
Search See more	
Recent activity	9

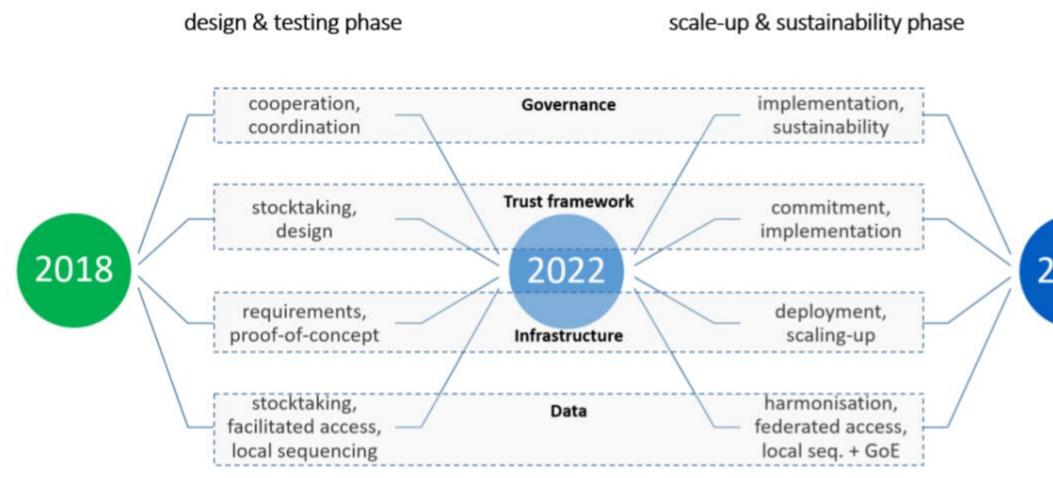
11

Example 2: the Genome Projects


- 1000 Genomes Project (2008-2015)
 - Goal: to find most genetic variants with frequencies of at least 1% in the lacksquarepopulations studied
- 100 000 Genomes Project (2013-2018)
 - Goal: focus on rare diseases, some common types of cancer and infectious diseases
- 1+ Million Genomes (2018-2027)

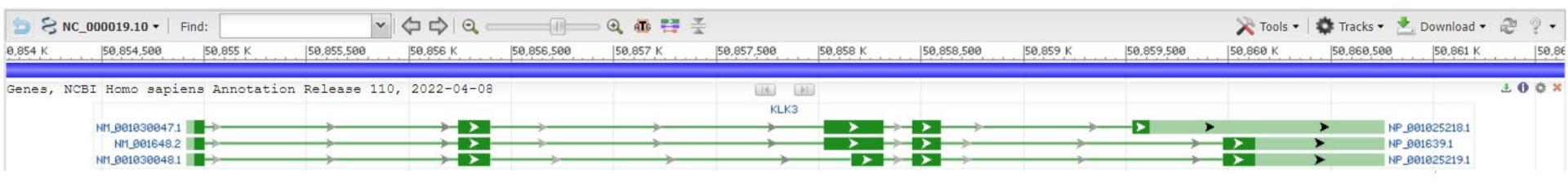

ACGTACGTACGTA<mark>C</mark>GTACGTACGT ACGTACCTACGTACGTACGTACGT ACGTACCTACGTATGTTCGTACGT ACGTACGTACGTATGTTCGTACGT

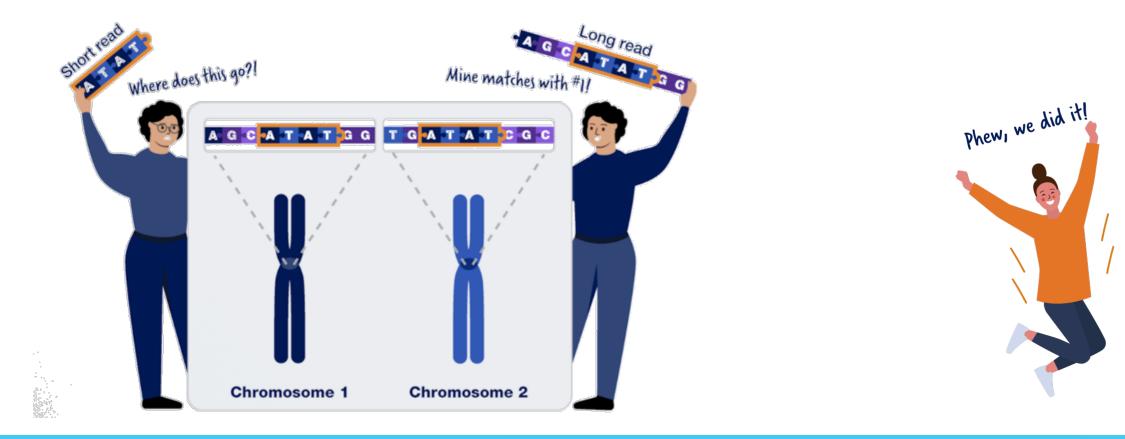
Example 2: the Genome Projects


100 000 Genomes Project (2013 - 2018)

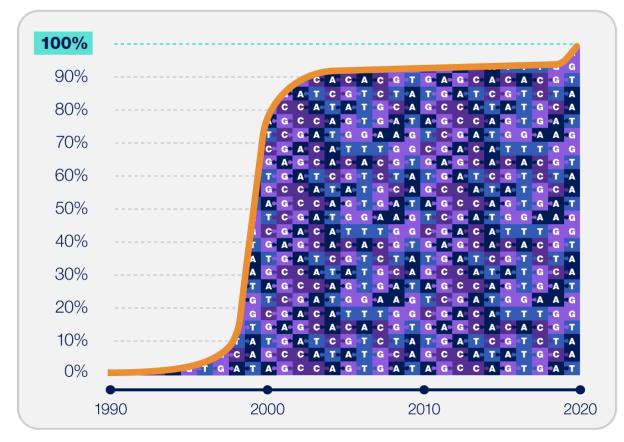
Example 2: the Genome Projects

• 1+ Million Genomes

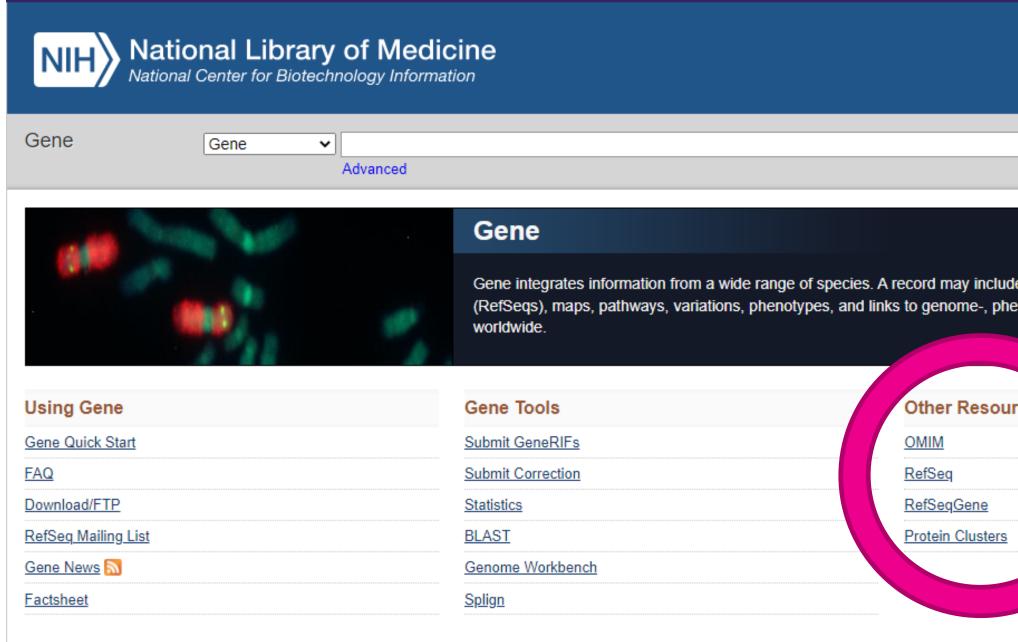



Lots of diversity between genomes => solution is needed

- **Genome Reference Consortium (GRC)**
 - Goal: create the best possible reference assembly for humans
 - -> latest major release: GRCh38 (also know as hg38) version 14 ${ \bullet }$
 - https://www.ncbi.nlm.nih.gov/grc/human \bullet
- **NCBI** Reference Sequence Database (RefSeq)
 - Non-redundant, well annotated set of reference sequences including genomes, transcripts and proteins
 - https://www.ncbi.nlm.nih.gov/refseq/ ${\color{black}\bullet}$
 - One gene/transcript/protein = one sequence


Note: GRCh38 is not complete...

- Telomere-to-Telomere (T2T) consortium: https://www.genome.gov/t2t ${}^{\bullet}$
- Data: https://github.com/marbl/CHM13 \bullet



1/02/2024

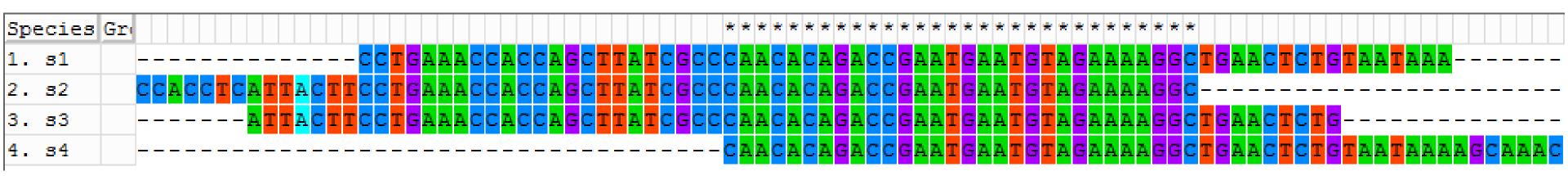
Percent of human genome sequence released

Representative queries

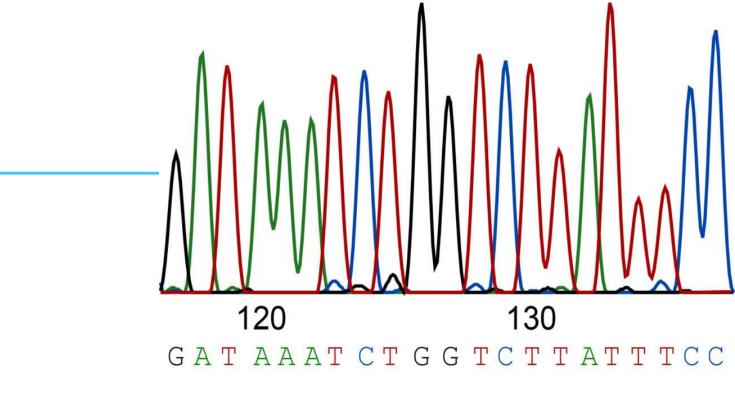
1/02/202

Find genes by	Search text
free text	human muscular dystrophy
chromosome and symbol	(II[chr] OR 2[chr]) AND adh*[sym]
partial name and multiple species	alive[prop] AND transporter[title] AND ("Drosophila melanogaster"[orgn] OR "Mus musculus"[orgn])
associated sequence accession	M11313[accn]

	Log in
Search	Help
lude nomenclature, Reference Seques phenotype-, and locus-specific reso	
burces	A good place to start searching for
	a (reference) sequence!


17

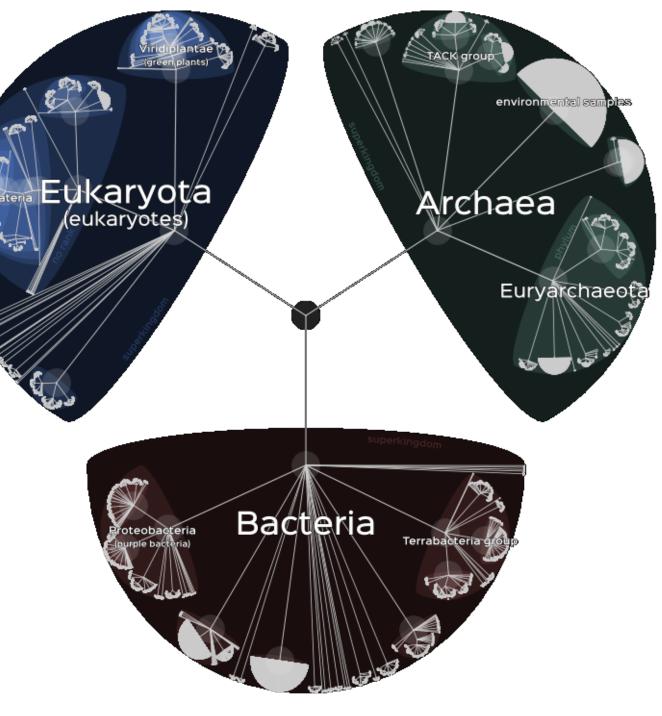
Next (next) Generation Sequencing


Result: unknown nucleotide sequences

Determination of sequence ≠ simple keyword search strategy

⇒ Usage of <u>evolutionary models</u> to determine <u>homology</u> between nucleotide (or protein) sequences

- Based on sequence alignment
- **BLAST**: <u>Basic Local Alignment Search Tool</u>

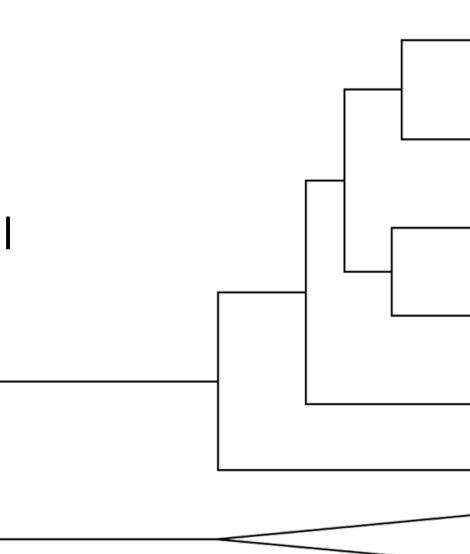

ategy <u>gy</u> between nucleotide (o

Homology

- Derived from a common ancestor
- 2 types:
 - Orthologs = speciation event (different species)
 - Paralogs = duplication event (same species)
- Typically based on morphological characteristics
- Use "molecular phylogeny" to determine homology
- \Rightarrow Phylogenetic tree

1/02/2024

https://lifemap-ncbi.univ-lyon1.fr/#



Homology

- Derived from a common ancestor
- 2 types:
 - Orthologs
 - Paralogs

Typically based on morphological characteristics

- Use "molecular phylogeny" to determine homology
- \Rightarrow Phylogenetic tree

	French Bulldog	Star.
	Bulldog	RPA
	Cavalier King Charles Spaniel	1318
Pomeranian		
	Pug	
		D D
Standard Schnauzer		M
German Shepherd		
Wolf		

File format	•
-------------	---

Fasta-file:

- Header line starting with ">"
- One or more lines containing the sequence

```
>1
>2
>3
>4
>5
>6
```

Multifasta-file:

- Mutiple sequences in Fasta format below one another.
- A new sequence is recognized by the ">" in front of each header

GGCCGGTAAAACTCGTGCCAGCCACCGCGGTTAAACGAGAGGCCCTAGTTGATAA GGCCGGTAAAACTCGTGCCAGCCACCGCGGTTAAACGAGAGGCCCTAGTTGATAT GGTCGGTTAAACTCGTGCCAGCCACCGCGGTTATACGAGAGACCCTAGTTGACTC/ GGCCGGTAAATTCGCGTGCCAGCAACCGCGGTTAGACGTACATAGGCCTAAGTTG GGCCGGTAAAACTCGTGCCAGCCACCGCGGTTAAACGAGAGGCCCTAGTTGATAG GGCCGGTAAAACTCGTGCCAGCCACCGCGGTTAGACGAGAGGCCCTAGTTGATAT

>unknown human nucleotide sequence CAAGGCTGTCCCCCAAGACGTGCTCCCAGGACGAGTTTCGCTGCCACGATGGGAAGTGCATCTCTCGGCAGTTCGTCTGTGACTC AGACCGGGACTGCTTGGACGGCTCAGACGAGGCCTCCTGCCCGGTGCTCACCTGTGGTCCCGCCAGCTTCCAGTGCAACAGCTCCA CCTGCATCCCCCAGCTGTGGGCCTGCGACAAC

- Given: an unknown human nucleotide Fasta sequence
- -> https://www.bio-informatica.be/workshops/

> "unknown human nucleotide sequence.fasta"

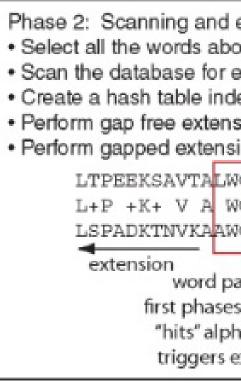
- To determine the identity -> use BLAST (<u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>)
 - Settings: \bullet
 - Organism: *Homo sapiens*
 - Database: refseq rna
 - Exclude: models

Results:

- Identity ullet
- Bits score \bullet
- Expect value ullet
- Gaps \bullet

🛃 <u>Dow</u>	nload	<mark>l ∽</mark> <u>GenBank</u> G	<u>Graphics</u>		
Range	1: 39	0 to 593 GenBank	Graphics		Vext Match
Score	(22)	Expect	Identities	Gaps	Strand
377 bit	ts(204) 9e-104	204/204(100%)	0/204(0%)	Plus/Plus
Query	1	CAAGGCTGTCCCCCC	AAGACGTGCTCCCAGGACG	AGTTTCGCTGCCACGATGG	GAAGTGC 60
Sbjct	390	CAAGGCTGTCCCCCC	AAGACGTGCTCCCAGGACG	AGTTTCGCTGCCACGATGG	GAAGTGC 449
Query	61	ATCTCTCGGCAGTTC	GTCTGTGACTCAGACCGGG	ACTGCTTGGACGGCTCAGA	CGAGGCC 120
Sbjct	450	ATCTCTCGGCAGTTC	GTCTGTGACTCAGACCGGG	ACTGCTTGGACGGCTCAGA	CGAGGCC 509
Query	121	TCCTGCCCGGTGCTC	ACCTGTGGTCCCGCCAGCT	TCCAGTGCAACAGCTCCAC	CTGCATC 180
Sbjct	510	TCCTGCCCGGTGCTC	ACCTGTGGTCCCGCCAGCT	TCCAGTGCAACAGCTCCAC	CTGCATC 569
Query	181	CCCCAGCTGTGGGCC	TGCGACAAC 204		
Sbjct	570	CCCCAGCTGTGGGCC	TGCGACAAC 593		

Previous Match


BLAST

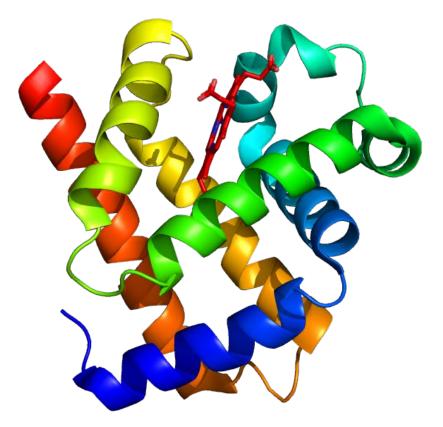
- Not a simple keyword search strategy
- 3 steps
 - LIST
 - SCAN \bullet
 - EXTEND \bullet
- Based on a model of evolution and scoring system

Phase 1: Setup: compile a list of words (w=3) above threshold T

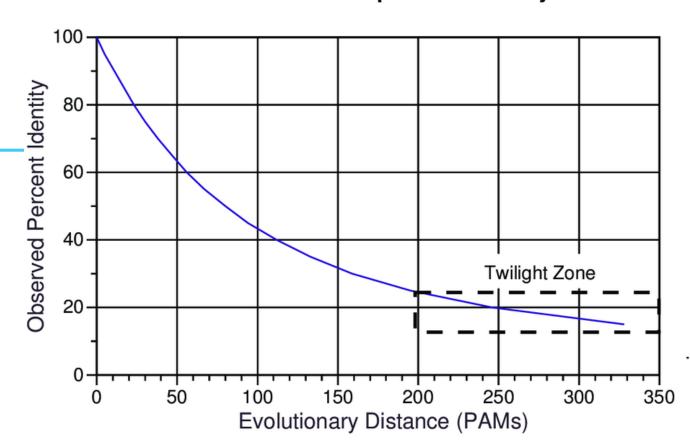
- Words derived from que
- Generate a list of words (both above and below in the query and the sc BLOSUM62 matrix) for y
- Generate similar lists or the query (e.g. words for

threshold

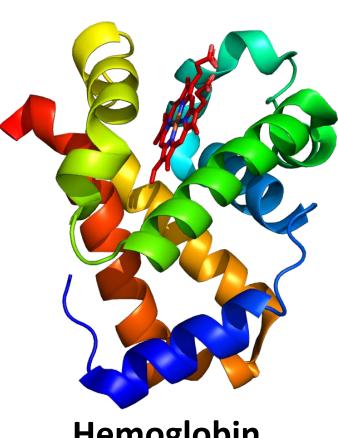
 Query sequence: human beta globin NP_000509.1 (includes ...VTALWGKVNVD...). This sequence is read; low complexity or other filtering is applied; a "lookup" table is built.


ery sequence (HBB):	VTA	TAL	ALW	LWG	WGK	GKV	KVN	VNV	NVD	
Is matching query (T). Consider LWG cores (derived from a various words. of words spanning r WGW, GWG, WGK).	examp words thresh	>=		LWG IWG MWG VWG FWG AWG LWS LWN LWA LYG	2+1 2+1 1+1 0+1 0+1 4+1 4+1 4+1	L1+6= L1+6= L1+6= L1+6= L1+6= L1+0= L1+0= L1+0= L1+0= L1+0=	=19 =18 =17 =17 =15 =15 =15			
d	examp words thresh	below		FWS AWS	4+ 0+1 -1+1 -1+1 2+1	L1+0= L1+0=	=11 =10 =10	•		

extensions ove threshold T (LWG, IWG, MWG, VWG, FWG, AWG, LWS, LWN, LWA, LYG) entries ("hits") that match the compiled list dex with the locations of all the hits for each word	ŝ.
isions	
sions	
WGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV HBE WGKV + E G EAL R+ + +P T+ +F F D G+ +V	3
WGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQV HBZ	4
extension pair from es of search ha globin, extension	


- Are two sequences homologues?
 - Look at percent identity (quantitative) \bullet + expect value
- Problem: homology = YES/NO question

Example case:

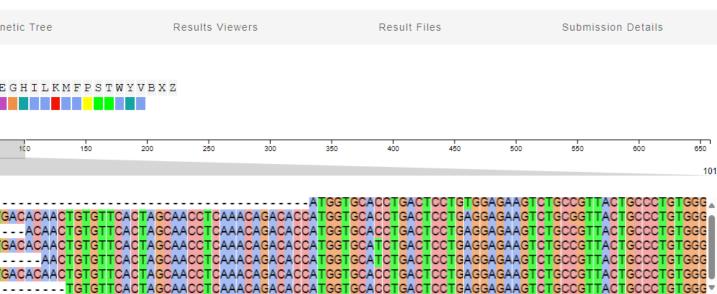

Is it possible to predict that human myoglobin (NP 05359) and **beta hemoglobin** (NP_000509) are paralogs?

Myoglobin

The Limits of Sequence Similarity

Hemoglobin

25


Compare nucleotide sequence with a reference sequence

- Nucleotide diversity -> DNA variant identification
- Example: nucleotide diversity in multiple hemoglobin beta variants
 - https://www.bio-informatica.be/workshops/ \bullet > "HBB multiple sequence alignment.fasta"
 - Align sequences using MUSCLE software (Muscle < EMBL-EBI) \bullet
 - -> output: HTML

Multiple sequence alignment (MSA)

-> phylogenetic analysis

Alignments	Tool Output	Phylogen
	COLOR SCHEME	LEGEND
Nightingale	clustal2	► ARNDCQE
	7 sequences	50
_	QQ AY136510.	
	V00497. AF349114.	-ACATTTGCTTCTC
	NM_000518. AF181989.	- ACATTTGCTTCTG
	BC007075. AF117710	GACATTTGCTTCTC

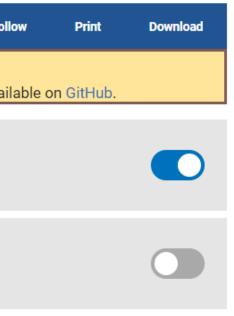
Browsing genetic variations

1/02/2024

- Natural genetic variation -> Variation Viewer lacksquarehttps://www.ncbi.nlm.nih.gov/variation/view
- Database of short genetic variations -> NCBI dbSNP (<u>https://www.ncbi.nlm.nih.gov/snp/</u>) ${\bullet}$

		Share th
	New to Variation Viewer? Read our quick overview! X	
Homo sapiens (human)	Assembly: GRCh38.p14 (GCF_000001405.40) ▼ • Chr 1 (NC_000001.11) ▼	
	K NC_000001.11: 1 - 248,956,422	
C Location, gene or phenotype	p36.33 p36.21 p36.12 p35.1 p34.2 p33 p32.3 p32.1 p31.2 p31.1 p22.3 p22.1 p21.3 p13.3 p12 p11.1 q12 q21.1	q21.2 q22 q23.1 q2
Pick Assembly	Exon Navigator: There are too many (5519)	genes in the regio
Tracks and User Data	Please narrow the region to enable exor	
History	🖢 😌 NC_000001.11 - <⊅ 🗘 🔍 🖩 💳 🤤 🍕 👫	
Assembly Region Details	1	9 M 160 M
	NCBI RefSeq Annotation GCF_000001405.40-RS_2023_10	··· / [!!.
	dbVar Clinical Structural Variants (nstd102)	
	dbVar Non-Pathogenic Clinical Structural Variants (subset of nstd102)	
	dbVar Non-Pathogenic Clinical Structural Variants (subset of nstd102) dbVar Pathogenic Clinical Structural Variants (subset of nstd102)	
		-

e this page	Reset All	More Info∗	You Tube
q23.3 q24.2 q2	5.2 q31.1 q31.1	3 q32.1 q32.3 q4	2.11 q42.2 q43 q44
egion.			
🔊 То	ools 🗸 🏟 Tr	acks 🕶 📥 Dow	nload + 🔊 🤉 🗸
•••			20 M 248,956,422
			±θ¢×
		° USH:	2A †RYR2 †SI
	1 · · · · ·		1RG\$7
11			± 0 ≎ ×
11			1RG\$7 ''''''''''''''''''''''''''''''''''''
11		\''' / ·\{'	1RG\$7
11			±0≎×
11			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11			±00×
		200 M 2	+ FGS7 + H + H + H + H + H + H + H + H + H + H


27

Database of variants with clinical significance: ClinVar

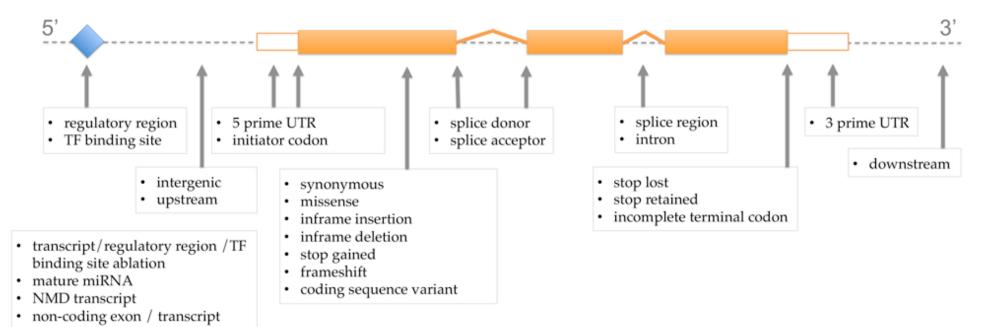
https://www.ncbi.nlm.nih.gov/clinvar/

NM_0	07294.4(I	BRCA1):c.5503_5564del (p.	Arg1835fs)			Cite	Fo
• • •		I the ClinVar website to better suppor				ic variants in ClinVar i	s ava
	ssification 🔭 🏠 😧 8	Pathogenic reviewed by expert panel					
ov Somatic	data submit	ted for somatic clinical impact	Comotio	No data s	submitted for o	oncogenicity	
ariant Def)						
		ClinGen Gene Do					
Gene	OMIM	HI score 🔞	TS sco	re 🤨	Variation Viewer 6		
BRCA1		Sufficient evidence for dosage pa	athogenicity	No evidence	No evidence available GF		
onditions	- Germline	e 🔨					
Condition ©		Classification @ (# of submissions)	Review sta	atus 🛛	Last e	evaluated 🛛	
	rian cancer, Isceptibility t	Pathogenic (3)	★★☆☆		Apr 22	2, 2016	

1/02/2024

Related variants							
Within gene 🔞	All ©						
12337	14026						

Variation/condition record @



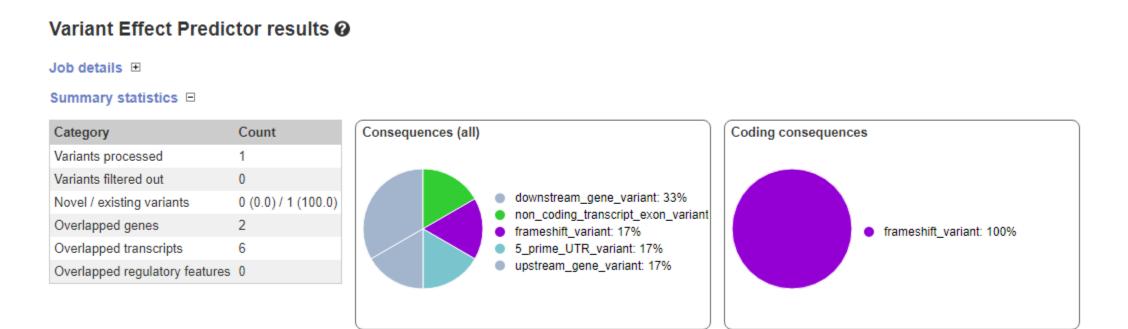
RCV000112684.6

28

Genetic variation -> effect on protein structure/function?

Depends on the location of the mutation/variation

Use PROVEAN or SIFT (Sorts Intolerant From Tolerant) score for amino acid substitutions


	Show/hide columns												
Variant ID	🔶 Chr: bp	Alleles	Global MAF ♦ C	lass	Source	Evidence	Clin. Sig. ♦	Conseq. Type 🔶	AA	AA co- ord	<u>SIFT</u>	Poly- Phen	
<u>rs33954264</u>	11:5225602	T/A/C/G	- S	NP	dbSNP	5	▲?	missense variant	H/L	147	0	0.	
rs33954264	11:5225602	T/A/C/G	- S	NP	dbSNP	5	▲?	missense variant	H/R	147	0.01	0.	
<u>rs33954264</u>	11:5225602	T/A/C/G	- S	NP	dbSNP	5	▲?	missense variant	H/P	147	0	0.9	
rs33961444	11:5225603	G/A/C	- S	NP	dbSNP	J %	A ?	missense variant	H/Y	147	0.02	0.1	

Genetic variation \rightarrow effect on protein structure/function?

• Variant Effect Predictor (<u>https://www.ensembl.org/Homo_sapiens/Tools/VEP</u>)

- Example: investigate rs13306510
 - Look up the SNP in the dbSNP database
 - Examine the SNP with the Variant Effect Predictor

1/02/2024

n? Iomo sapiens/Tools/VEP)

Concluding remarks

Bioinformatics is more than sequence alignment, BLAST, variant calling...

Interested in more? Be sure to check our offers of further training!

1/02/2024

Bioinformatics for dummies MB&C2024 Workshop

Cedric Hermans Paco Hulpiau